BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2590231)

  • 1. Viscometric characterization of pennisetin from pearl millet.
    Sainani MN; Lachke AH; Sahasrabudhe NA; Ranjekar PK
    Biochem Biophys Res Commun; 1989 Nov; 165(1):334-41. PubMed ID: 2590231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet.
    Bugs MR; Forato LA; Bortoleto-Bugs RK; Fischer H; Mascarenhas YP; Ward RJ; Colnago LA
    Eur Biophys J; 2004 Jul; 33(4):335-43. PubMed ID: 14508615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of pearl millet prolamins.
    Marcellino LH; Bloch Junior C; Gander ES
    Protein Pept Lett; 2002 Jun; 9(3):237-44. PubMed ID: 12144520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a 20 kD prolamin from kodo millet (Paspalum scrobiculatum) (L.): homology with other millets and cereals.
    Parameswaran KP; Thayumanavan B
    Plant Foods Hum Nutr; 1997; 50(4):359-73. PubMed ID: 9477430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of two prolamins with 1-13C oleic acid by 13C NMR.
    Forato LA; Yushmanov VE; Colnago LA
    Biochemistry; 2004 Jun; 43(22):7121-6. PubMed ID: 15170349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminal amino acid sequences of prolamins encoded by the alleles at the Pro1 and Pro2 loci in foxtail millet, Setaria italica (L.) P. Beauv.
    Nakayama H; Komatsu S; Namai H; Okuno K
    Genes Genet Syst; 1999 Dec; 74(6):309-14. PubMed ID: 10791027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Extraction and characterization of grain prolamins of 6 sorghum Sorghum bicolor L. Moench cultivars].
    Ortíz de Bertorelli L
    Arch Latinoam Nutr; 1992 Mar; 42(1):46-51. PubMed ID: 1308645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The native energy landscape for interleukin-1beta. Modulation of the population ensemble through native-state topology.
    Roy M; Chavez LL; Finke JM; Heidary DK; Onuchic JN; Jennings PA
    J Mol Biol; 2005 Apr; 348(2):335-47. PubMed ID: 15811372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of parboiling on decortication yield of millet grains and phenolic acids and in vitro digestibility of selected millet products.
    Bora P; Ragaee S; Marcone M
    Food Chem; 2019 Feb; 274():718-725. PubMed ID: 30373000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of starches of proso, foxtail, barnyard, kodo, and little millets.
    Krishna Kumari S; Thayumanavan B
    Plant Foods Hum Nutr; 1998; 53(1):47-56. PubMed ID: 10890757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model.
    Higurashi T; Nosaka K; Mizobata T; Nagai J; Kawata Y
    J Mol Biol; 1999 Aug; 291(3):703-13. PubMed ID: 10448048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and immunochemical homologies between foxtail millet glutelin 60 kDa and starch granule-bound starch synthase proteins from rice, barley, corn and wheat grains.
    Takumi K; Udaka J; Kimoto M; Koga T; Tsuji H
    J Nutr Sci Vitaminol (Tokyo); 2000 Apr; 46(2):109-12. PubMed ID: 10885800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologies between prolamins of different minor millets.
    Parameswaran KP; Thayumanavan B
    Plant Foods Hum Nutr; 1995 Sep; 48(2):119-26. PubMed ID: 8837870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On prolamins from wheat, rye, maize and millet. (X. On seed proteins)].
    WALDSCHMIDT-LEITZ E; METZNER P
    Hoppe Seylers Z Physiol Chem; 1962 Sep; 329():52-61. PubMed ID: 13998444
    [No Abstract]   [Full Text] [Related]  

  • 16. Guanidine hydrochloride-induced folding of proteins.
    Hagihara Y; Aimoto S; Fink AL; Goto Y
    J Mol Biol; 1993 May; 231(2):180-4. PubMed ID: 8389881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association.
    Grossman SH
    Biochim Biophys Acta; 1994 Nov; 1209(1):19-23. PubMed ID: 7947978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity and fluorescence changes of lactate dehydrogenase induced by guanidine hydrochloride in reverse micelles.
    Shoshani L; Darszon A; Tuena de Gómez-Puyou M; Gómez-Puyou A
    Eur J Biochem; 1994 May; 221(3):1027-32. PubMed ID: 8181458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein, calcium, and iron content of wild and cultivated species of Echinochloa.
    Mandelbaum CI; Barbeau WE; Hilu KW
    Plant Foods Hum Nutr; 1995 Feb; 47(2):101-8. PubMed ID: 7792257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and characterization of stable intermediate state(s) in the unfolding of ovomucoid by guanidine hydrochloride.
    Baig MA; Salahuddin A
    Biochem J; 1978 Apr; 171(1):89-97. PubMed ID: 646827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.