BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25902534)

  • 1. Predicting plant vulnerability to drought in biodiverse regions using functional traits.
    Skelton RP; West AG; Dawson TE
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5744-9. PubMed ID: 25902534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions.
    Pivovaroff AL; Cook VMW; Santiago LS
    Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency.
    Waite PA; Kumar M; Link RM; Schuldt B
    Tree Physiol; 2024 May; 44(5):. PubMed ID: 38606678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.
    Tombesi S; Nardini A; Farinelli D; Palliotti A
    Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry.
    Fu X; Meinzer FC; Woodruff DR; Liu YY; Smith DD; McCulloh KA; Howard AR
    Plant Cell Environ; 2019 Jul; 42(7):2245-2258. PubMed ID: 30820970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant resistance to drought depends on timely stomatal closure.
    Martin-StPaul N; Delzon S; Cochard H
    Ecol Lett; 2017 Nov; 20(11):1437-1447. PubMed ID: 28922708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.
    Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY
    Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation.
    Garcia-Forner N; Adams HD; Sevanto S; Collins AD; Dickman LT; Hudson PJ; Zeppel MJ; Jenkins MW; Powers H; Martínez-Vilalta J; Mcdowell NG
    Plant Cell Environ; 2016 Jan; 39(1):38-49. PubMed ID: 26081870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept.
    Martínez-Vilalta J; Garcia-Forner N
    Plant Cell Environ; 2017 Jun; 40(6):962-976. PubMed ID: 27739594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal factors and vulnerability of stem xylem to cavitation in poplars.
    Arango-Velez A; Zwiazek JJ; Thomas BR; Tyree MT
    Physiol Plant; 2011 Oct; 143(2):154-65. PubMed ID: 21623799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aridity-dependent sequence of water potentials for stomatal closure and hydraulic dysfunctions in woody plants.
    Jin Y; Hao G; Hammond WM; Yu K; Liu X; Ye Q; Zhou Z; Wang C
    Glob Chang Biol; 2023 Apr; 29(7):2030-2040. PubMed ID: 36655297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species.
    Rodríguez-Calcerrada J; Li M; López R; Cano FJ; Oleksyn J; Atkin OK; Pita P; Aranda I; Gil L
    New Phytol; 2017 Jan; 213(2):597-610. PubMed ID: 27575435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum.
    Chen Z; Zhang Y; Yuan W; Zhu S; Pan R; Wan X; Liu S
    Tree Physiol; 2021 Sep; 41(9):1601-1610. PubMed ID: 33693879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat.
    Corso D; Delzon S; Lamarque LJ; Cochard H; Torres-Ruiz JM; King A; Brodribb T
    Plant Cell Environ; 2020 Apr; 43(4):854-865. PubMed ID: 31953855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species.
    Marchin RM; Backes D; Ossola A; Leishman MR; Tjoelker MG; Ellsworth DS
    Glob Chang Biol; 2022 Feb; 28(3):1133-1146. PubMed ID: 34741566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.
    Sperry JS; Wang Y; Wolfe BT; Mackay DS; Anderegg WR; McDowell NG; Pockman WT
    New Phytol; 2016 Nov; 212(3):577-589. PubMed ID: 27329266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought.
    Carminati A; Javaux M
    Trends Plant Sci; 2020 Sep; 25(9):868-880. PubMed ID: 32376085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought survival in conifer species is related to the time required to cross the stomatal safety margin.
    Petek-Petrik A; Petrík P; Lamarque LJ; Cochard H; Burlett R; Delzon S
    J Exp Bot; 2023 Nov; 74(21):6847-6859. PubMed ID: 37681745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.