These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 25902534)
1. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Skelton RP; West AG; Dawson TE Proc Natl Acad Sci U S A; 2015 May; 112(18):5744-9. PubMed ID: 25902534 [TBL] [Abstract][Full Text] [Related]
2. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
3. Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency. Waite PA; Kumar M; Link RM; Schuldt B Tree Physiol; 2024 May; 44(5):. PubMed ID: 38606678 [TBL] [Abstract][Full Text] [Related]
4. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Tombesi S; Nardini A; Farinelli D; Palliotti A Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791 [TBL] [Abstract][Full Text] [Related]
5. Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry. Fu X; Meinzer FC; Woodruff DR; Liu YY; Smith DD; McCulloh KA; Howard AR Plant Cell Environ; 2019 Jul; 42(7):2245-2258. PubMed ID: 30820970 [TBL] [Abstract][Full Text] [Related]
6. Plant resistance to drought depends on timely stomatal closure. Martin-StPaul N; Delzon S; Cochard H Ecol Lett; 2017 Nov; 20(11):1437-1447. PubMed ID: 28922708 [TBL] [Abstract][Full Text] [Related]
7. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618 [TBL] [Abstract][Full Text] [Related]
8. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Garcia-Forner N; Adams HD; Sevanto S; Collins AD; Dickman LT; Hudson PJ; Zeppel MJ; Jenkins MW; Powers H; Martínez-Vilalta J; Mcdowell NG Plant Cell Environ; 2016 Jan; 39(1):38-49. PubMed ID: 26081870 [TBL] [Abstract][Full Text] [Related]
9. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Martínez-Vilalta J; Garcia-Forner N Plant Cell Environ; 2017 Jun; 40(6):962-976. PubMed ID: 27739594 [TBL] [Abstract][Full Text] [Related]
10. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197 [TBL] [Abstract][Full Text] [Related]
11. Stomatal factors and vulnerability of stem xylem to cavitation in poplars. Arango-Velez A; Zwiazek JJ; Thomas BR; Tyree MT Physiol Plant; 2011 Oct; 143(2):154-65. PubMed ID: 21623799 [TBL] [Abstract][Full Text] [Related]
12. Aridity-dependent sequence of water potentials for stomatal closure and hydraulic dysfunctions in woody plants. Jin Y; Hao G; Hammond WM; Yu K; Liu X; Ye Q; Zhou Z; Wang C Glob Chang Biol; 2023 Apr; 29(7):2030-2040. PubMed ID: 36655297 [TBL] [Abstract][Full Text] [Related]
13. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species. Rodríguez-Calcerrada J; Li M; López R; Cano FJ; Oleksyn J; Atkin OK; Pita P; Aranda I; Gil L New Phytol; 2017 Jan; 213(2):597-610. PubMed ID: 27575435 [TBL] [Abstract][Full Text] [Related]
14. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum. Chen Z; Zhang Y; Yuan W; Zhu S; Pan R; Wan X; Liu S Tree Physiol; 2021 Sep; 41(9):1601-1610. PubMed ID: 33693879 [TBL] [Abstract][Full Text] [Related]
15. Neither xylem collapse, cavitation, or changing leaf conductance drive stomatal closure in wheat. Corso D; Delzon S; Lamarque LJ; Cochard H; Torres-Ruiz JM; King A; Brodribb T Plant Cell Environ; 2020 Apr; 43(4):854-865. PubMed ID: 31953855 [TBL] [Abstract][Full Text] [Related]
17. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
18. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. Sperry JS; Wang Y; Wolfe BT; Mackay DS; Anderegg WR; McDowell NG; Pockman WT New Phytol; 2016 Nov; 212(3):577-589. PubMed ID: 27329266 [TBL] [Abstract][Full Text] [Related]
19. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought. Carminati A; Javaux M Trends Plant Sci; 2020 Sep; 25(9):868-880. PubMed ID: 32376085 [TBL] [Abstract][Full Text] [Related]
20. Drought survival in conifer species is related to the time required to cross the stomatal safety margin. Petek-Petrik A; Petrík P; Lamarque LJ; Cochard H; Burlett R; Delzon S J Exp Bot; 2023 Nov; 74(21):6847-6859. PubMed ID: 37681745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]