These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25903442)
41. Three-dimensional graphene networks as a new substrate for immobilization of laccase and dopamine and its application in glucose/O2 biofuel cell. Zhang Y; Chu M; Yang L; Tan Y; Deng W; Ma M; Su X; Xie Q ACS Appl Mater Interfaces; 2014 Aug; 6(15):12808-14. PubMed ID: 25019407 [TBL] [Abstract][Full Text] [Related]
42. Combination of laccase and catalase in construction of H2O2-O2 based biocathode for applications in glucose biofuel cells. Ammam M; Fransaer J Biosens Bioelectron; 2013 Jan; 39(1):274-81. PubMed ID: 22906713 [TBL] [Abstract][Full Text] [Related]
43. Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes. Salaj-Kosla U; Pöller S; Schuhmann W; Shleev S; Magner E Bioelectrochemistry; 2013 Jun; 91():15-20. PubMed ID: 23274541 [TBL] [Abstract][Full Text] [Related]
44. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490 [TBL] [Abstract][Full Text] [Related]
45. Intramolecular electron transfer in laccases. Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996 [TBL] [Abstract][Full Text] [Related]
46. Efficiency of Site-Specific Clicked Laccase-Carbon Nanotubes Biocathodes towards O Gentil S; Rousselot-Pailley P; Sancho F; Robert V; Mekmouche Y; Guallar V; Tron T; Le Goff A Chemistry; 2020 Apr; 26(21):4798-4804. PubMed ID: 31999372 [TBL] [Abstract][Full Text] [Related]
47. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells. Engel AB; Cherifi A; Tingry S; Cornu D; Peigney A; Laurent Ch Nanotechnology; 2013 Jun; 24(24):245402. PubMed ID: 23702912 [TBL] [Abstract][Full Text] [Related]
48. Direct electron transfer reactions between human ceruloplasmin and electrodes. Haberska K; Vaz-Domínguez C; De Lacey AL; Dagys M; Reimann CT; Shleev S Bioelectrochemistry; 2009 Sep; 76(1-2):34-41. PubMed ID: 19535300 [TBL] [Abstract][Full Text] [Related]
49. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode. Ardhaoui M; Bhatt S; Zheng M; Dowling D; Jolivalt C; Khonsari FA Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3197-205. PubMed ID: 23706201 [TBL] [Abstract][Full Text] [Related]
50. Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons. Blanford CF; Foster CE; Heath RS; Armstrong FA Faraday Discuss; 2008; 140():319-35; discussion 417-37. PubMed ID: 19213324 [TBL] [Abstract][Full Text] [Related]
51. Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes. Adam C; Scodeller P; Grattieri M; Villalba M; Calvo EJ Bioelectrochemistry; 2016 Jun; 109():101-7. PubMed ID: 26883057 [TBL] [Abstract][Full Text] [Related]
52. Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation. Sosna M; Chrétien JM; Kilburn JD; Bartlett PN Phys Chem Chem Phys; 2010 Sep; 12(34):10018-26. PubMed ID: 20577679 [TBL] [Abstract][Full Text] [Related]
53. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode. Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173 [TBL] [Abstract][Full Text] [Related]
54. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes. MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272 [TBL] [Abstract][Full Text] [Related]
55. A His-tagged Melanocarpus albomyces laccase and its electrochemistry upon immobilisation on NTA-modified electrodes and in conducting polymer films. Sosna M; Boer H; Bartlett PN Chemphyschem; 2013 Jul; 14(10):2225-31. PubMed ID: 23757174 [TBL] [Abstract][Full Text] [Related]
56. Electrochemistry of myoglobin in Nafion and multi-walled carbon nanotubes modified carbon ionic liquid electrode. Sun W; Li X; Wang Y; Li X; Zhao C; Jiao K Bioelectrochemistry; 2009 Jun; 75(2):170-5. PubMed ID: 19394899 [TBL] [Abstract][Full Text] [Related]
57. Direct bioelectrocatalysis by redox enzymes immobilized in electrostatically condensed oppositely charged polyelectrolyte electrode coatings. Lim K; Sima M; Stewart RJ; Minteer SD Analyst; 2020 Feb; 145(4):1250-1257. PubMed ID: 31854387 [TBL] [Abstract][Full Text] [Related]
59. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability. Rengaraj S; Kavanagh P; Leech D Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596 [TBL] [Abstract][Full Text] [Related]
60. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]