These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25903469)

  • 1. Expression of the postsynaptic scaffold PSD-95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken.
    Goyer D; Fensky L; Hilverling AM; Kurth S; Kuenzel T
    Eur J Neurosci; 2015 May; 41(11):1416-29. PubMed ID: 25903469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.
    Clarkson C; Antunes FM; Rubio ME
    J Neurosci; 2016 Sep; 36(39):10214-27. PubMed ID: 27683915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presynaptic plasticity at two giant auditory synapses in normal and deaf mice.
    Oleskevich S; Youssoufian M; Walmsley B
    J Physiol; 2004 Nov; 560(Pt 3):709-19. PubMed ID: 15331689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons.
    Wang Y; Ren C; Manis PB
    Hear Res; 2010 Dec; 270(1-2):101-9. PubMed ID: 20850512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.
    Ahn J; MacLeod KM
    J Neurophysiol; 2016 Mar; 115(3):1679-90. PubMed ID: 26719087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings.
    Kopp-Scheinpflug C; Dehmel S; Dörrscheidt GJ; Rübsamen R
    J Neurosci; 2002 Dec; 22(24):11004-18. PubMed ID: 12486196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice.
    Wang Y; Manis PB
    J Neurophysiol; 2008 Sep; 100(3):1255-64. PubMed ID: 18632895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postsynaptic FMRP Regulates Synaptogenesis
    Wang X; Zorio DAR; Schecterson L; Lu Y; Wang Y
    J Neurosci; 2018 Jul; 38(29):6445-6460. PubMed ID: 29950504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of presynaptic Na(+)/K(+)-ATPase reduces readily releasable pool size at the avian end-bulb of Held synapse.
    Taruno A; Ohmori H; Kuba H
    Neurosci Res; 2012 Feb; 72(2):117-28. PubMed ID: 22100365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of spontaneous activity in development of the endbulb of Held synapse.
    McKay SM; Oleskevich S
    Hear Res; 2007 Aug; 230(1-2):53-63. PubMed ID: 17590547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss.
    Xie R; Manis PB
    J Physiol; 2017 Feb; 595(3):919-934. PubMed ID: 27618790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonotopic Specializations in Number, Size, and Reversal Potential of GABAergic Inputs Fine-Tune Temporal Coding at Avian Cochlear Nucleus.
    Al-Yaari M; Onogi C; Yamada R; Adachi R; Kondo D; Kuba H
    J Neurosci; 2021 Oct; 41(43):8904-8916. PubMed ID: 34518306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo.
    Rosenberg MM; Yang F; Mohn JL; Storer EK; Jacob MH
    J Neurosci; 2010 Aug; 30(33):11073-85. PubMed ID: 20720115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and elimination of endbulb synapses in the chick cochlear nucleus.
    Lu T; Trussell LO
    J Neurosci; 2007 Jan; 27(4):808-17. PubMed ID: 17251420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms and Functional Consequences of Presynaptic Homeostatic Plasticity at Auditory Nerve Synapses.
    Zhuang X; Wong NF; Sun W; Xu-Friedman MA
    J Neurosci; 2020 Sep; 40(36):6896-6909. PubMed ID: 32747441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal development of a large auditory nerve terminal: the endbulb of Held in cats.
    Ryugo DK; Montey KL; Wright AL; Bennett ML; Pongstaporn T
    Hear Res; 2006; 216-217():100-15. PubMed ID: 16497457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus.
    Nicol MJ; Walmsley B
    J Physiol; 2002 Mar; 539(Pt 3):713-23. PubMed ID: 11897843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSD-95 involvement in maturation of excitatory synapses.
    El-Husseini AE; Schnell E; Chetkovich DM; Nicoll RA; Bredt DS
    Science; 2000 Nov; 290(5495):1364-8. PubMed ID: 11082065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.