These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 25903872)

  • 1. Orbital relaxation effects on Kohn-Sham frontier orbital energies in density functional theory.
    Zhang D; Zheng X; Li C; Yang W
    J Chem Phys; 2015 Apr; 142(15):154113. PubMed ID: 25903872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonempirical scaling correction approach for density functional methods involving substantial amount of Hartree-Fock exchange.
    Zheng X; Zhou T; Yang W
    J Chem Phys; 2013 May; 138(17):174105. PubMed ID: 23656112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curvature and Frontier Orbital Energies in Density Functional Theory.
    Stein T; Autschbach J; Govind N; Kronik L; Baer R
    J Phys Chem Lett; 2012 Dec; 3(24):3740-4. PubMed ID: 26291104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple DFT Scheme for Estimating Negative Electron Affinities.
    Vibert CP; Tozer DJ
    J Chem Theory Comput; 2019 Jan; 15(1):241-248. PubMed ID: 30495952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals.
    Baerends EJ; Gritsenko OV
    J Chem Phys; 2005 Aug; 123(6):62202. PubMed ID: 16122288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations.
    Mei Y; Li C; Su NQ; Yang W
    J Phys Chem A; 2019 Jan; 123(3):666-673. PubMed ID: 30589546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.
    Sharpe DJ; Levy M; Tozer DJ
    J Chem Theory Comput; 2018 Feb; 14(2):684-692. PubMed ID: 29298061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
    Kananenka AA; Kohut SV; Gaiduk AP; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2013 Aug; 139(7):074112. PubMed ID: 23968077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential.
    Amati M; Stoia S; Baerends EJ
    J Chem Theory Comput; 2020 Jan; 16(1):443-452. PubMed ID: 31794657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Koopmans-like approximation in the Kohn-Sham method and the impact of the frozen core approximation on the computation of the reactivity parameters of the density functional theory.
    Vargas R; Garza J; Cedillo A
    J Phys Chem A; 2005 Oct; 109(39):8880-92. PubMed ID: 16834292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical evaluation of Fukui functions and real-space linear response function.
    Yang W; Cohen AJ; De Proft F; Geerlings P
    J Chem Phys; 2012 Apr; 136(14):144110. PubMed ID: 22502504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective one-particle energies from generalized Kohn-Sham random phase approximation: A direct approach for computing and analyzing core ionization energies.
    Voora VK; Galhenage R; Hemminger JC; Furche F
    J Chem Phys; 2019 Oct; 151(13):134106. PubMed ID: 31594336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies.
    Baerends EJ; Gritsenko OV; van Meer R
    Phys Chem Chem Phys; 2013 Oct; 15(39):16408-25. PubMed ID: 24002107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piecewise linearity of approximate density functionals revisited: implications for frontier orbital energies.
    Kraisler E; Kronik L
    Phys Rev Lett; 2013 Mar; 110(12):126403. PubMed ID: 25166825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
    Lesiuk M; Balawender R; Zachara J
    J Chem Phys; 2012 Jan; 136(3):034104. PubMed ID: 22280741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchy of model Kohn-Sham potentials for orbital-dependent functionals: a practical alternative to the optimized effective potential method.
    Kohut SV; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2014 May; 140(18):18A535. PubMed ID: 24832343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shrinking Self-Interaction Errors with the Fermi-Löwdin Orbital Self-Interaction-Corrected Density Functional Approximation.
    Sharkas K; Li L; Trepte K; Withanage KPK; Joshi RP; Zope RR; Baruah T; Johnson JK; Jackson KA; Peralta JE
    J Phys Chem A; 2018 Dec; 122(48):9307-9315. PubMed ID: 30412407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.