These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25903877)

  • 1. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations.
    Ramakrishnan R; Rauhut G
    J Chem Phys; 2015 Apr; 142(15):154118. PubMed ID: 25903877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anharmonic rovibrational calculations of singlet cyclic C4 using a new ab initio potential and a quartic force field.
    Wang X; Huang X; Bowman JM; Lee TJ
    J Chem Phys; 2013 Dec; 139(22):224302. PubMed ID: 24329063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of EOM-CCSD(T)(a)*-Based Quartic Force Fields in Computing Fundamental, Anharmonic Vibrational Frequencies of Molecular Electronically Excited States with Application to the
    Watrous AG; Davis MC; Fortenberry RC
    J Phys Chem A; 2024 Mar; 128(11):2150-2161. PubMed ID: 38466814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental vibrational frequencies and spectroscopic constants of cis- and trans-HOCS, HSCO, and isotopologues via quartic force fields.
    Fortenberry RC; Huang X; McCarthy MC; Crawford TD; Lee TJ
    J Phys Chem B; 2014 Jun; 118(24):6498-510. PubMed ID: 24635494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental vibrational frequencies and spectroscopic constants of HOCS+, HSCO+, and isotopologues via quartic force fields.
    Fortenberry RC; Huang X; Francisco JS; Crawford TD; Lee TJ
    J Phys Chem A; 2012 Sep; 116(38):9582-90. PubMed ID: 22950849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles theories for anharmonic lattice vibrations.
    Hirata S; Keçeli M; Yagi K
    J Chem Phys; 2010 Jul; 133(3):034109. PubMed ID: 20649310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anharmonic Vibrational States of Solids from DFT Calculations. Part I: Description of the Potential Energy Surface.
    Erba A; Maul J; Ferrabone M; Carbonnière P; Rérat M; Dovesi R
    J Chem Theory Comput; 2019 Jun; 15(6):3755-3765. PubMed ID: 31038943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A procedure for computing accurate ab initio quartic force fields: Application to HO2+ and H2O.
    Huang X; Lee TJ
    J Chem Phys; 2008 Jul; 129(4):044312. PubMed ID: 18681651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picking up Good Vibrations through Quartic Force Fields and Vibrational Perturbation Theory.
    Fortenberry RC
    J Phys Chem Lett; 2024 Jun; 15(25):6528-6537. PubMed ID: 38875074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine.
    Faizan M; Alam MJ; Afroz Z; Bhat SA; Ahmad S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():26-31. PubMed ID: 28689075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations.
    Meier P; Oschetzki D; Berger R; Rauhut G
    J Chem Phys; 2014 May; 140(18):184111. PubMed ID: 24832257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN(+).
    Yu Q; Bowman JM; Fortenberry RC; Mancini JS; Lee TJ; Crawford TD; Klemperer W; Francisco JS
    J Phys Chem A; 2015 Nov; 119(47):11623-31. PubMed ID: 26529262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates.
    Sibaev M; Crittenden DL
    J Chem Phys; 2016 Jun; 144(21):214107. PubMed ID: 27276945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An approach to include the effects of diffuse functions in potential energy surface calculations.
    Huang X; Schwenke DW; Lee TJ
    J Phys Chem A; 2009 Oct; 113(43):11954-62. PubMed ID: 19702284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2.
    Huang X; Valeev EF; Lee TJ
    J Chem Phys; 2010 Dec; 133(24):244108. PubMed ID: 21197977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of high-order terms in potential energy surface expansions using the reference-geometry Harris-Foulkes method.
    Meier P; Bellchambers G; Klepp J; Manby FR; Rauhut G
    Phys Chem Chem Phys; 2013 Jul; 15(25):10233-40. PubMed ID: 23525154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive potential energy surface generation method using curvilinear valence coordinates.
    Richter F; Carbonniere P; Dargelos A; Pouchan C
    J Chem Phys; 2012 Jun; 136(22):224105. PubMed ID: 22713034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT + F12 QFFs for Cost-Effective Rovibrational Spectral Data Predictions of Ground and Excited Electronic States.
    Garrett NR; Davis MC; Fortenberry RC
    J Chem Theory Comput; 2024 Feb; 20(3):1324-1336. PubMed ID: 38230913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positioning of grid points for spanning potential energy surfaces-How much effort is really needed?
    Schneider M; Born D; Kästner J; Rauhut G
    J Chem Phys; 2023 Apr; 158(14):144118. PubMed ID: 37061506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anharmonic rovibrational analysis for disilacyclopropenylidene (Si2CH2).
    Lu T; Wilke JJ; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2011 Apr; 134(16):164101. PubMed ID: 21528944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.