BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 25904335)

  • 1. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles.
    Wong MY; Cavolo SL; Levitan ES
    Mol Biol Cell; 2015 Jul; 26(13):2466-74. PubMed ID: 25904335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
    Cavolo SL; Bulgari D; Deitcher DL; Levitan ES
    J Neurosci; 2016 Nov; 36(46):11781-11787. PubMed ID: 27852784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture.
    Wong MY; Zhou C; Shakiryanova D; Lloyd TE; Deitcher DL; Levitan ES
    Cell; 2012 Mar; 148(5):1029-38. PubMed ID: 22385966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.
    Bulgari D; Jha A; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1617-1622. PubMed ID: 29378961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.
    Bulgari D; Deitcher DL; Levitan ES
    Eur J Cell Biol; 2017 Aug; 96(5):402-406. PubMed ID: 28129919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events.
    Xia X; Lessmann V; Martin TF
    J Cell Sci; 2009 Jan; 122(Pt 1):75-82. PubMed ID: 19066284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
    Bulgari D; Zhou C; Hewes RS; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3597-601. PubMed ID: 24550480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can an increase in neuropeptide production in the soma lead to DCV circulation in axon terminals with type III en passant boutons?
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2015 Sep; 267():61-78. PubMed ID: 26122837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling for vesicle mobilization and synaptic plasticity.
    Levitan ES
    Mol Neurobiol; 2008 Feb; 37(1):39-43. PubMed ID: 18446451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limited distal organelles and synaptic function in extensive monoaminergic innervation.
    Tao J; Bulgari D; Deitcher DL; Levitan ES
    J Cell Sci; 2017 Aug; 130(15):2520-2529. PubMed ID: 28600320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating Reversibility of Dense Core Vesicles Capture in En Passant Boutons: Using Mathematical Modeling to Understand the Fate of Dense Core Vesicles in En Passant Boutons.
    Kuznetsov IA; Kuznetsov AV
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 29049515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release.
    Yu SC; Liewald JF; Shao J; Steuer Costa W; Gottschalk A
    J Neurosci; 2021 May; 41(19):4187-4201. PubMed ID: 33820857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-evoked and spontaneous opening of synaptic fusion pores.
    Bulgari D; Deitcher DL; Schmidt BF; Carpenter MA; Szent-Gyorgyi C; Bruchez MP; Levitan ES
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17039-17044. PubMed ID: 31383765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent liberation of synaptic neuropeptide vesicles.
    Shakiryanova D; Tully A; Hewes RS; Deitcher DL; Levitan ES
    Nat Neurosci; 2005 Feb; 8(2):173-8. PubMed ID: 15643430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons versus synapses.
    Knabbe J; Nassal JP; Verhage M; Kuner T
    J Physiol; 2018 Aug; 596(16):3759-3773. PubMed ID: 29873393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4.
    Bharat V; Siebrecht M; Burk K; Ahmed S; Reissner C; Kohansal-Nodehi M; Steubler V; Zweckstetter M; Ting JT; Dean C
    Cell Rep; 2017 Nov; 21(8):2118-2133. PubMed ID: 29166604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of a sudden drop-off in distal dense core vesicle concentration in Drosophila type II motoneuron terminals.
    Kuznetsov IA; Kuznetsov AV
    Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3523. PubMed ID: 34418891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent synaptic capture of transiting peptidergic vesicles.
    Shakiryanova D; Tully A; Levitan ES
    Nat Neurosci; 2006 Jul; 9(7):896-900. PubMed ID: 16767091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles.
    Wong MY; Shakiryanova D; Levitan ES
    J Mol Neurosci; 2009 Feb; 37(2):146-50. PubMed ID: 18592416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ and cAMP open differentially dilating synaptic fusion pores.
    Bulgari D; Cavolo SL; Schmidt BF; Buchan K; Bruchez MP; Deitcher DL; Levitan ES
    J Cell Sci; 2023 Jul; 136(13):. PubMed ID: 37303204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.