These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 25904356)
21. Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat. Fujimoto Y; Yamasaki T; Tanaka N; Mochizuki Y; Kajihara H; Ikuta Y; Ochi M Eur Spine J; 2006 Feb; 15(2):223-33. PubMed ID: 16292632 [TBL] [Abstract][Full Text] [Related]
22. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. Arochena M; Anadón R; Díaz-Regueira SM J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591 [TBL] [Abstract][Full Text] [Related]
23. Spatiotemporal expression of Ski after rat spinal cord injury. Zhou K; Nan W; Feng D; Yi Z; Zhu Y; Long Z; Li S; Zhang H; Wu Y Neuroreport; 2017 Feb; 28(3):149-157. PubMed ID: 28059863 [TBL] [Abstract][Full Text] [Related]
24. Patterns of glial development in the human foetal spinal cord during the late first and second trimester. Weidenheim KM; Epshteyn I; Rashbaum WK; Lyman WD J Neurocytol; 1994 Jun; 23(6):343-53. PubMed ID: 7522270 [TBL] [Abstract][Full Text] [Related]
25. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699 [TBL] [Abstract][Full Text] [Related]
26. Characterization of glial fibrillary acidic protein and astroglial architecture in the brain of a continuously growing fish, the rainbow trout. Alunni A; Vaccari S; Torcia S; Meomartini ME; Nicotra A; Alfei L Eur J Histochem; 2005; 49(2):157-66. PubMed ID: 15967744 [TBL] [Abstract][Full Text] [Related]
27. Regional differentiation of the human fetal ependyma: immunocytochemical markers. Sarnat HB J Neuropathol Exp Neurol; 1992 Jan; 51(1):58-75. PubMed ID: 1371311 [TBL] [Abstract][Full Text] [Related]
28. Developmental change of the nestin-immunoreactive midline raphe glial structure in human brainstem and spinal cord. Takano T; Becker LE Dev Neurosci; 1997; 19(2):202-9. PubMed ID: 9097036 [TBL] [Abstract][Full Text] [Related]
29. Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. Choi BH; Kim RC J Neuroimmunol; 1985 Jun; 8(4-6):215-35. PubMed ID: 2409106 [TBL] [Abstract][Full Text] [Related]
30. Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord after compression injury. Chen J; Leong SY; Schachner M Eur J Neurosci; 2005 Oct; 22(8):1895-906. PubMed ID: 16262629 [TBL] [Abstract][Full Text] [Related]
32. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. Lent R; Uziel D; Baudrimont M; Fallet C J Comp Neurol; 2005 Mar; 483(4):375-82. PubMed ID: 15700272 [TBL] [Abstract][Full Text] [Related]
33. Do astroglial cells participate in the process of human spinal cord myelination? Rafałlowska J; Krajewski S Neuropatol Pol; 1991; 29(1-2):41-7. PubMed ID: 1726023 [TBL] [Abstract][Full Text] [Related]
34. Distribution of glial fibrillary acidic protein-immunopositive structures in the developing brain of the turtle Mauremys leprosa. Kálmán M; Martin-Partido G; Hidalgo-Sanchez M; Majorossy K Anat Embryol (Berl); 1997 Jul; 196(1):47-65. PubMed ID: 9242888 [TBL] [Abstract][Full Text] [Related]
35. Down-regulation of glial fibrillary acidic protein and vimentin by RNA interference improves acute urinary dysfunction associated with spinal cord injury in rats. Toyooka T; Nawashiro H; Shinomiya N; Shima K J Neurotrauma; 2011 Apr; 28(4):607-18. PubMed ID: 21250919 [TBL] [Abstract][Full Text] [Related]
36. Immunoblot identification of glial fibrillary acidic protein in rat sciatic nerve, brain, and spinal cord during development. Noetzel MJ; Agrawal HC Neurochem Res; 1985 Jun; 10(6):737-53. PubMed ID: 4033869 [TBL] [Abstract][Full Text] [Related]
37. Characterization of spinal cord glial cells in a model of hindlimb unloading in mice. Chelyshev YA; Muhamedshina YO; Povysheva TV; Shaymardanova GF; Rizvanov AA; Nigmetzyanova MV; Tiapkina OV; Bondarenko NI; Nikolskiy EE; Islamov RR Neuroscience; 2014 Nov; 280():328-39. PubMed ID: 25218808 [TBL] [Abstract][Full Text] [Related]
38. Comparative study by S-100 and GFAP immunohistochemistry of glial cell populations in the early stages of human spinal cord development. Lauriola L; Coli A; Cocchia D; Tallini G; Michetti F Brain Res; 1987 Dec; 465(1-2):251-5. PubMed ID: 3440205 [TBL] [Abstract][Full Text] [Related]
39. Expression of intermediate filaments and desmosomal proteins during differentiation of the human spinal cord. Saraga-Babić M; Stefanović V; Saraga M; Wartiovaara J; Lehtonen E Acta Histochem; 2002; 104(2):157-66. PubMed ID: 12086336 [TBL] [Abstract][Full Text] [Related]
40. Radial astrocytes and ependymocytes in the spinal cord of the adult toad (Bufo bufo L.). An immunohistochemical and ultrastructural study. Bodega G; Suárez I; Fernández B Cell Tissue Res; 1990 May; 260(2):307-14. PubMed ID: 2113429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]