These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25904469)

  • 1. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.
    Grabowska M; Toth TI; Smarandache-Wellmann C; Daun-Gruhn S
    J Comput Neurosci; 2015 Jun; 38(3):601-16. PubMed ID: 25904469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
    Yeldesbay A; Tóth T; Daun S
    J Comput Neurosci; 2018 Jun; 44(3):313-339. PubMed ID: 29589252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
    Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A
    J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.
    Tóth TI; Daun-Gruhn S
    J Neurophysiol; 2016 Feb; 115(2):887-906. PubMed ID: 26581871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves.
    Tóth TI; Grabowska M; Rosjat N; Hellekes K; Borgmann A; Daun-Gruhn S
    Biol Cybern; 2015 Jun; 109(3):349-62. PubMed ID: 25712905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory feedback in cockroach locomotion: current knowledge and open questions.
    Ayali A; Couzin-Fuchs E; David I; Gal O; Holmes P; Knebel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Sep; 201(9):841-50. PubMed ID: 25432627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical modeling study of inter-segmental coordination during stick insect walking.
    Daun-Gruhn S
    J Comput Neurosci; 2011 Apr; 30(2):255-78. PubMed ID: 20567889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion.
    Grabowska M; Toth TI; Büschges A; Daun S
    J Neurosci; 2022 Jun; 42(24):4841-4851. PubMed ID: 35545434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inter-segmental network model and its use in elucidating gait-switches in the stick insect.
    Daun-Gruhn S; Tóth TI
    J Comput Neurosci; 2011 Aug; 31(1):43-60. PubMed ID: 21165687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominance of local sensory signals over inter-segmental effects in a motor system: modeling studies.
    Daun-Gruhn S; Tóth TI; Borgmann A
    Biol Cybern; 2011 Dec; 105(5-6):413-26. PubMed ID: 22290139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-leg nerves and possible homologies with insects.
    Elson RC
    J Comp Neurol; 1996 Jan; 365(1):1-17. PubMed ID: 8821437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
    Büschges A
    J Neurophysiol; 2005 Mar; 93(3):1127-35. PubMed ID: 15738270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
    Borgmann A; Toth TI; Gruhn M; Daun-Gruhn S; Büschges A
    Biol Cybern; 2011 Dec; 105(5-6):399-411. PubMed ID: 22290138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs.
    Tóth TI; Daun S
    Physiol Rep; 2017 Feb; 5(4):. PubMed ID: 28242829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-dependent changes in strength and efficacy of leg coordination mechanisms.
    Dürr V
    J Exp Biol; 2005 Jun; 208(Pt 12):2253-67. PubMed ID: 15939768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling intra- and intersegmental neuronal connectivity between central pattern generating networks in a multi-legged locomotor system.
    Daun S; Mantziaris C; Tóth T; Büschges A; Rosjat N
    PLoS One; 2019; 14(8):e0220767. PubMed ID: 31386699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.