These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25904527)

  • 1. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.
    Yates CA; Flegg MB
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
    Harrison JU; Yates CA
    J R Soc Interface; 2016 Sep; 13(122):. PubMed ID: 27628171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations.
    Kang HW; Erban R
    Bull Math Biol; 2019 Aug; 81(8):3185-3213. PubMed ID: 31165406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems.
    Smith CA; Yates CA
    R Soc Open Sci; 2018 Aug; 5(8):180920. PubMed ID: 30225082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes.
    Yates CA; George A; Jordana A; Smith CA; Duncan AB; Zygalakis KC
    J R Soc Interface; 2020 Oct; 17(171):20200563. PubMed ID: 33081647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches.
    Taylor PR; Baker RE; Simpson MJ; Yates CA
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27383421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact on-lattice stochastic reaction-diffusion simulations using partial-propensity methods.
    Ramaswamy R; Sbalzarini IF
    J Chem Phys; 2011 Dec; 135(24):244103. PubMed ID: 22225140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic Turing patterns: analysis of compartment-based approaches.
    Cao Y; Erban R
    Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic reaction-diffusion algorithms for macromolecular crowding.
    Sturrock M
    Phys Biol; 2016 Jun; 13(3):036010. PubMed ID: 27346297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid models of chemotaxis with application to leukocyte migration.
    Lu H; Um K; Tartakovsky DM
    J Math Biol; 2021 Mar; 82(4):23. PubMed ID: 33646399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials.
    Isaacson SA; Isaacson D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066106. PubMed ID: 20365230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
    Simpson MJ; Baker RE; Buenzli PR; Nicholson R; Maclaren OJ
    J Theor Biol; 2022 Sep; 549():111201. PubMed ID: 35752285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.
    Sayyidmousavi A; Rohlf K; Ilie S
    Math Biosci; 2019 Jun; 312():23-32. PubMed ID: 30998936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions.
    Erban R; Chapman SJ
    Phys Biol; 2009 Aug; 6(4):046001. PubMed ID: 19700812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially distributed stochastic systems: Equation-free and equation-assisted preconditioned computations.
    Qiao L; Erban R; Kelley CT; Kevrekidis IG
    J Chem Phys; 2006 Nov; 125(20):204108. PubMed ID: 17144691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid approaches for multiple-species stochastic reaction-diffusion models.
    Spill F; Guerrero P; Alarcon T; Maini PK; Byrne H
    J Comput Phys; 2015 Oct; 299():429-445. PubMed ID: 26478601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition.
    Alemani D; Pappalardo F; Pennisi M; Motta S; Brusic V
    J Immunol Methods; 2012 Feb; 376(1-2):55-68. PubMed ID: 22154892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Linear Noise Approximation for Spatially Dependent Biochemical Networks.
    Lötstedt P
    Bull Math Biol; 2019 Aug; 81(8):2873-2901. PubMed ID: 29644520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.