These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25904643)
21. Double-tilt in situ TEM holder with multiple electrical contacts and its application in MEMS-based mechanical testing of nanomaterials. Bernal RA; Ramachandramoorthy R; Espinosa HD Ultramicroscopy; 2015 Sep; 156():23-8. PubMed ID: 25974881 [TBL] [Abstract][Full Text] [Related]
22. Dual-axis 360° rotation specimen holder for analysis of three-dimensional magnetic structures. Tsuneta R; Kashima H; Iwane T; Harada K; Koguchi M Microscopy (Oxf); 2014 Dec; 63(6):469-73. PubMed ID: 25145647 [TBL] [Abstract][Full Text] [Related]
23. Revisiting calculation of tilt angles for double-tilt sample holders in transmission electron microscopes. Li XZ Microsc Res Tech; 2024 Nov; 87(11):2681-2686. PubMed ID: 38923712 [TBL] [Abstract][Full Text] [Related]
24. An in-situ magnetising holder achieving 1.5 T in-plane field in 200 kV transmission electron microscope. Bai T; Sun X; Qin J; Li F; Gao Q; Xia W; Chen R; Yan A; Li W Ultramicroscopy; 2024 Jun; 260():113950. PubMed ID: 38493522 [TBL] [Abstract][Full Text] [Related]
25. A simple cryo-holder facilitates specimen observation under a conventional scanning electron microscope. Tang CY; Huang RN; Kuo-Huang LL; Kuo TC; Yang YY; Lin CY; Jane WN; Chen SJ Microsc Res Tech; 2012 Feb; 75(2):103-11. PubMed ID: 21761491 [TBL] [Abstract][Full Text] [Related]
26. Advances in transmission electron microscopy: in situ straining and in situ compression experiments on metallic glasses. De Hosson JT Microsc Res Tech; 2009 Mar; 72(3):250-60. PubMed ID: 19189312 [TBL] [Abstract][Full Text] [Related]
27. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Mele L; Konings S; Dona P; Evertz F; Mitterbauer C; Faber P; Schampers R; Jinschek JR Microsc Res Tech; 2016 Apr; 79(4):239-50. PubMed ID: 26818213 [TBL] [Abstract][Full Text] [Related]
28. Analysis of nonlinear intensity attenuation in bright-field TEM images for correct 3D reconstruction of the density in micron-sized materials. Yamasaki J; Mutoh M; Ohta S; Yuasa S; Arai S; Sasaki K; Tanaka N Microscopy (Oxf); 2014 Oct; 63(5):345-55. PubMed ID: 24891385 [TBL] [Abstract][Full Text] [Related]
29. Multifunctional TEM-specimen holder equipped with a piezodriving probe and an electron irradiation port. Shindo D; Suzuki S; Sato K; Akase Z; Murakami Y; Yamazaki K; Ikeda Y; Fukuda T Microscopy (Oxf); 2013 Aug; 62(4):487-90. PubMed ID: 23568257 [TBL] [Abstract][Full Text] [Related]
30. Transmission electron microtomography without the "missing wedge" for quantitative structural analysis. Kawase N; Kato M; Nishioka H; Jinnai H Ultramicroscopy; 2007 Jan; 107(1):8-15. PubMed ID: 16730409 [TBL] [Abstract][Full Text] [Related]
31. Development of a gas environmental heating specimen holder system using differential pumping. Hashimoto A; Han Y; Akimoto H; Hozumi R; Takeguchi M Microscopy (Oxf); 2021 Nov; 70(6):545-549. PubMed ID: 34046671 [TBL] [Abstract][Full Text] [Related]
32. Developing of an environmental cell TEM holder for dynamic in situ observation. Bataineh KM Rev Sci Instrum; 2016 Feb; 87(2):023705. PubMed ID: 26931858 [TBL] [Abstract][Full Text] [Related]
33. Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Weyland M; Midgley PA Microsc Microanal; 2003 Dec; 9(6):542-55. PubMed ID: 14750989 [TBL] [Abstract][Full Text] [Related]
34. An ultrahigh vacuum compatible sample holder for studying complex metal surfaces. Dhaka RS; Shukla AK; Maniraj M; D'Souza SW; Nayak J; Barman SR Rev Sci Instrum; 2010 Apr; 81(4):043907. PubMed ID: 20441350 [TBL] [Abstract][Full Text] [Related]
35. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy. Patel B; Watanabe M Microsc Microanal; 2014 Feb; 20(1):124-32. PubMed ID: 24423133 [TBL] [Abstract][Full Text] [Related]
36. Method for Cross-sectional Thin Specimen Preparation from a Specific Site Using a Combination of a Focused Ion Beam System and Intermediate Voltage Electron Microscope and Its Application to the Characterization of a Precipitate in a Steel. Yaguchi T; Matsumoto H; Kamino T; Ishitani T; Urao R Microsc Microanal; 2001 May; 7(3):287-291. PubMed ID: 12597819 [TBL] [Abstract][Full Text] [Related]
37. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Grapes MD; LaGrange T; Friedman LH; Reed BW; Campbell GH; Weihs TP; LaVan DA Rev Sci Instrum; 2014 Aug; 85(8):084902. PubMed ID: 25173298 [TBL] [Abstract][Full Text] [Related]
38. In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the Surface of Ice Crystals by Using a Liquid Cell With a Peltier Cooling Holder. Yamazaki T; Yashima Y; Katsuno H; Miyazaki H; Gondo T; Kimura Y Microsc Microanal; 2023 Dec; 29(6):1940-1949. PubMed ID: 37851094 [TBL] [Abstract][Full Text] [Related]
39. Transmission electron microscope in situ fatigue experiments: a computer-control approach. Vecchio KS; Hunt JA; Williams DB J Electron Microsc Tech; 1991 Mar; 17(3):351-5. PubMed ID: 2045966 [TBL] [Abstract][Full Text] [Related]
40. 3D image reconstruction of fiber systems using electron tomography. Fakron OM; Field DP Ultramicroscopy; 2015 Feb; 149():21-5. PubMed ID: 25464156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]