BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

678 related articles for article (PubMed ID: 25904793)

  • 1. Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice.
    Geoffroy CG; Lorenzana AO; Kwan JP; Lin K; Ghassemi O; Ma A; Xu N; Creger D; Liu K; He Z; Zheng B
    J Neurosci; 2015 Apr; 35(16):6413-28. PubMed ID: 25904793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury.
    Du K; Zheng S; Zhang Q; Li S; Gao X; Wang J; Jiang L; Liu K
    J Neurosci; 2015 Jul; 35(26):9754-63. PubMed ID: 26134657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury.
    Nakamura Y; Ueno M; Niehaus JK; Lang RA; Zheng Y; Yoshida Y
    J Neurosci; 2021 Dec; 41(50):10247-10260. PubMed ID: 34759029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice.
    Danilov CA; Steward O
    Exp Neurol; 2015 Apr; 266():147-60. PubMed ID: 25704959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axon regeneration in young adult mice lacking Nogo-A/B.
    Kim JE; Li S; GrandPré T; Qiu D; Strittmatter SM
    Neuron; 2003 Apr; 38(2):187-99. PubMed ID: 12718854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice.
    Lee JK; Geoffroy CG; Chan AF; Tolentino KE; Crawford MJ; Leal MA; Kang B; Zheng B
    Neuron; 2010 Jun; 66(5):663-70. PubMed ID: 20547125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTEN deletion enhances the regenerative ability of adult corticospinal neurons.
    Liu K; Lu Y; Lee JK; Samara R; Willenberg R; Sears-Kraxberger I; Tedeschi A; Park KK; Jin D; Cai B; Xu B; Connolly L; Steward O; Zheng B; He Z
    Nat Neurosci; 2010 Sep; 13(9):1075-81. PubMed ID: 20694004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury.
    Meves JM; Geoffroy CG; Kim ND; Kim JJ; Zheng B
    Exp Neurol; 2018 Nov; 309():32-43. PubMed ID: 30055160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reassessment of corticospinal tract regeneration in Nogo-deficient mice.
    Lee JK; Chan AF; Luu SM; Zhu Y; Ho C; Tessier-Lavigne M; Zheng B
    J Neurosci; 2009 Jul; 29(27):8649-54. PubMed ID: 19587271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1-/- Mice.
    Fink KL; Strittmatter SM; Cafferty WB
    J Neurosci; 2015 Nov; 35(46):15403-18. PubMed ID: 26586827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord regeneration.
    Young W
    Cell Transplant; 2014; 23(4-5):573-611. PubMed ID: 24816452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down.
    Willenberg R; Zukor K; Liu K; He Z; Steward O
    J Comp Neurol; 2016 Sep; 524(13):2654-76. PubMed ID: 26878190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury.
    Kim JE; Liu BP; Park JH; Strittmatter SM
    Neuron; 2004 Oct; 44(3):439-51. PubMed ID: 15504325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian target of rapamycin's distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS.
    Lee DH; Luo X; Yungher BJ; Bray E; Lee JK; Park KK
    J Neurosci; 2014 Nov; 34(46):15347-55. PubMed ID: 25392502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury.
    Zukor K; Belin S; Wang C; Keelan N; Wang X; He Z
    J Neurosci; 2013 Sep; 33(39):15350-61. PubMed ID: 24068802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Critical Role for DLK and LZK in Axonal Repair in the Mammalian Spinal Cord.
    Saikia JM; Chavez-Martinez CL; Kim ND; Allibhoy S; Kim HJ; Simonyan L; Smadi S; Tsai KM; Romaus-Sanjurjo D; Jin Y; Zheng B
    J Neurosci; 2022 May; 42(18):3716-3732. PubMed ID: 35361703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3.
    Jin D; Liu Y; Sun F; Wang X; Liu X; He Z
    Nat Commun; 2015 Nov; 6():8074. PubMed ID: 26598325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma.
    Sekine Y; Algarate PT; Cafferty WBJ; Strittmatter SM
    J Neurosci; 2019 Apr; 39(17):3204-3216. PubMed ID: 30804090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining task-based rehabilitative training with PTEN inhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice.
    Pan L; Tan B; Tang W; Luo M; Liu Y; Yu L; Yin Y
    Behav Brain Res; 2021 May; 405():113197. PubMed ID: 33621609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inositol Polyphosphate-5-Phosphatase K (
    Kauer SD; Fink KL; Li EHF; Evans BP; Golan N; Cafferty WBJ
    J Neurosci; 2022 Mar; 42(11):2190-2204. PubMed ID: 35135857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.