BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25904916)

  • 1. KCa3.1/IK1 Channel Regulation by cGMP-Dependent Protein Kinase (PKG) via Reactive Oxygen Species and CaMKII in Microglia: An Immune Modulating Feedback System?
    Ferreira R; Wong R; Schlichter LC
    Front Immunol; 2015; 6():153. PubMed ID: 25904916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.
    Wong R; Schlichter LC
    J Neurosci; 2014 Oct; 34(40):13371-83. PubMed ID: 25274816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of cGMP-dependent protein kinase stimulates cardiac ATP-sensitive potassium channels via a ROS/calmodulin/CaMKII signaling cascade.
    Chai Y; Zhang DM; Lin YF
    PLoS One; 2011 Mar; 6(3):e18191. PubMed ID: 21479273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia.
    Ferreira R; Lively S; Schlichter LC
    Front Cell Neurosci; 2014; 8():183. PubMed ID: 25071444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells.
    Ferreira R; Schlichter LC
    PLoS One; 2013; 8(4):e62345. PubMed ID: 23620825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes.
    Zhang DM; Chai Y; Erickson JR; Brown JH; Bers DM; Lin YF
    J Physiol; 2014 Mar; 592(5):971-90. PubMed ID: 24277866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration.
    Kaushal V; Koeberle PD; Wang Y; Schlichter LC
    J Neurosci; 2007 Jan; 27(1):234-44. PubMed ID: 17202491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of neuronal KATP channels by cGMP-dependent protein kinase: involvement of ROS and 5-hydroxydecanoate-sensitive factors in signal transduction.
    Chai Y; Lin YF
    Am J Physiol Cell Physiol; 2010 Apr; 298(4):C875-92. PubMed ID: 20053925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microglial SK3 and SK4 currents and activation state are modulated by the neuroprotective drug, riluzole.
    Liu BS; Ferreira R; Lively S; Schlichter LC
    J Neuroimmune Pharmacol; 2013 Mar; 8(1):227-37. PubMed ID: 22527636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion channels on microglia: therapeutic targets for neuroprotection.
    Skaper SD
    CNS Neurol Disord Drug Targets; 2011 Feb; 10(1):44-56. PubMed ID: 21143139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of KCa3.1 by depolarisation and 2-aminoethoxydiphenyl borate (2-APB) during Ca²⁺ release activated Ca²⁺ (CRAC) entry in human erythroleukemia (HEL) cells: Implications for the interpretation of 2-APB inhibition of CRAC entry.
    Littlechild R; Zaidman N; Khodaverdi D; Mason MJ
    Cell Calcium; 2015 Feb; 57(2):76-88. PubMed ID: 25601026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Interleukin 10 Transcription through the SMAD2/3 Signaling Pathway by Ca
    Matsui M; Kajikuri J; Kito H; Endo K; Hasegawa Y; Murate S; Ohya S
    Mol Pharmacol; 2019 Mar; 95(3):294-302. PubMed ID: 30622214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide stimulates a large-conductance Ca-activated K+ channel in human skin fibroblasts through protein kinase G pathway.
    Lim I; Yun J; Kim S; Lee C; Seo S; Kim T; Bang H
    Skin Pharmacol Physiol; 2005; 18(6):279-87. PubMed ID: 16145282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct effect of Ca2+-calmodulin on cGMP-activated Ca2+-dependent Cl-channels in rat mesenteric artery myocytes.
    Piper AS; Large WA
    J Physiol; 2004 Sep; 559(Pt 2):449-57. PubMed ID: 15235078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex molecular and functional outcomes of single versus sequential cytokine stimulation of rat microglia.
    Siddiqui TA; Lively S; Schlichter LC
    J Neuroinflammation; 2016 Mar; 13(1):66. PubMed ID: 27009332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-evoked intracellular Ca
    Palomba NP; Martinello K; Cocozza G; Casciato S; Mascia A; Di Gennaro G; Morace R; Esposito V; Wulff H; Limatola C; Fucile S
    J Neuroinflammation; 2021 Feb; 18(1):44. PubMed ID: 33588880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a QPatch automated electrophysiology assay for identifying KCa3.1 inhibitors and activators.
    Jenkins DP; Yu W; Brown BM; Løjkner LD; Wulff H
    Assay Drug Dev Technol; 2013; 11(9-10):551-60. PubMed ID: 24351043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG.
    Burnette JO; White RE
    Exp Eye Res; 2006 Dec; 83(6):1359-65. PubMed ID: 16959250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species.
    Palomeque J; Rueda OV; Sapia L; Valverde CA; Salas M; Petroff MV; Mattiazzi A
    Circ Res; 2009 Dec; 105(12):1204-12. PubMed ID: 19850941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca
    Ohya S; Kito H
    Biol Pharm Bull; 2018; 41(8):1158-1163. PubMed ID: 30068864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.