These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25904921)

  • 21. Composition and applications of focus libraries to phenotypic assays.
    Wassermann AM; Camargo LM; Auld DS
    Front Pharmacol; 2014; 5():164. PubMed ID: 25104937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions.
    Simpkins SW; Nelson J; Deshpande R; Li SC; Piotrowski JS; Wilson EH; Gebre AA; Safizadeh H; Okamoto R; Yoshimura M; Costanzo M; Yashiroda Y; Ohya Y; Osada H; Yoshida M; Boone C; Myers CL
    PLoS Comput Biol; 2018 Oct; 14(10):e1006532. PubMed ID: 30376562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High impact technologies for natural products screening.
    Koehn FE
    Prog Drug Res; 2008; 65():175, 177-210. PubMed ID: 18084916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional annotation of chemical libraries across diverse biological processes.
    Piotrowski JS; Li SC; Deshpande R; Simpkins SW; Nelson J; Yashiroda Y; Barber JM; Safizadeh H; Wilson E; Okada H; Gebre AA; Kubo K; Torres NP; LeBlanc MA; Andrusiak K; Okamoto R; Yoshimura M; DeRango-Adem E; van Leeuwen J; Shirahige K; Baryshnikova A; Brown GW; Hirano H; Costanzo M; Andrews B; Ohya Y; Osada H; Yoshida M; Myers CL; Boone C
    Nat Chem Biol; 2017 Sep; 13(9):982-993. PubMed ID: 28759014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forward chemical genetic screening.
    Choi H; Kim JY; Chang YT; Nam HG
    Methods Mol Biol; 2014; 1062():393-404. PubMed ID: 24057378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical genomics: characterizing target pathways for bioactive compounds using the endomembrane trafficking network.
    Rodriguez-Furlán C; Hicks GR; Norambuena L
    Methods Mol Biol; 2014; 1174():317-28. PubMed ID: 24947392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using chemical genomics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum.
    Worden N; Esteve VE; Domozych DS; Drakakaki G
    Methods Mol Biol; 2015; 1242():23-39. PubMed ID: 25408440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plants and Small Molecules: An Up-and-Coming Synergy.
    Lepri A; Longo C; Messore A; Kazmi H; Madia VN; Di Santo R; Costi R; Vittorioso P
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical genetics: elucidating biological systems with small-molecule compounds.
    Kawasumi M; Nghiem P
    J Invest Dermatol; 2007 Jul; 127(7):1577-84. PubMed ID: 17568801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Genomics Translatability from Unicellular to Multicellular Models.
    Rodriguez-Furlán C; Rubilar-Hernández C; Norambuena L
    Methods Mol Biol; 2018; 1795():189-201. PubMed ID: 29846929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.
    Wang J; Gao L; Lee YM; Kalesh KA; Ong YS; Lim J; Jee JE; Sun H; Lee SS; Hua ZC; Lin Q
    Pharmacol Ther; 2016 Jun; 162():10-22. PubMed ID: 26808165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical Genetic Dissection of Membrane Trafficking.
    Norambuena L; Tejos R
    Annu Rev Plant Biol; 2017 Apr; 68():197-224. PubMed ID: 28226233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early stage hit triage for plant chemical genetic screens and target site identification.
    Walsh TA
    Methods Mol Biol; 2014; 1056():191-9. PubMed ID: 24306874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics.
    Huang S; Balgi A; Pan Y; Li M; Zhang X; Du L; Zhou M; Roberge M; Li X
    Mol Plant; 2016 Dec; 9(12):1620-1633. PubMed ID: 27756575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant Chemical Genetics: From Phenotype-Based Screens to Synthetic Biology.
    Dejonghe W; Russinova E
    Plant Physiol; 2017 May; 174(1):5-20. PubMed ID: 28275150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A T-DNA mutant screen that combines high-throughput phenotyping with the efficient identification of mutated genes by targeted genome sequencing.
    Frank U; Kublik S; Mayer D; Engel M; Schloter M; Durner J; Gaupels F
    BMC Plant Biol; 2019 Dec; 19(1):539. PubMed ID: 31801481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Chemical Genetic Screening Procedure for
    Bjornson M; Song X; Dandekar A; Franz A; Drakakaki G; Dehesh K
    Bio Protoc; 2015 Jul; 5(13):. PubMed ID: 27446980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The emerging field of chemical genetics: potential applications for pesticide discovery.
    Walsh TA
    Pest Manag Sci; 2007 Dec; 63(12):1165-71. PubMed ID: 17912687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a reverse genetics approach to investigate small-molecule activity.
    Doyle SM; Robert S
    Methods Mol Biol; 2014; 1056():51-62. PubMed ID: 24306862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.