These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25904933)

  • 1. Artificial selection with traditional or genomic relationships: consequences in coancestry and genetic diversity.
    Rodríguez-Ramilo ST; García-Cortés LA; de Cara MÁ
    Front Genet; 2015; 6():127. PubMed ID: 25904933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inbreeding, effective population size, and coancestry in the Latxa dairy sheep breed.
    Granado-Tajada I; Rodríguez-Ramilo ST; Legarra A; Ugarte E
    J Dairy Sci; 2020 Jun; 103(6):5215-5226. PubMed ID: 32253040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations.
    Makanjuola BO; Miglior F; Abdalla EA; Maltecca C; Schenkel FS; Baes CF
    J Dairy Sci; 2020 Jun; 103(6):5183-5199. PubMed ID: 32278553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide estimates of coancestry and inbreeding in a closed herd of ancient Iberian pigs.
    Saura M; Fernández A; Rodríguez MC; Toro MA; Barragán C; Fernández AI; Villanueva B
    PLoS One; 2013; 8(10):e78314. PubMed ID: 24205195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of coancestry based on shared segments for maintaining genetic diversity.
    Gómez-Romano F; Villanueva B; Sölkner J; de Cara MA; Mészáros G; Pérez O'Brien AM; Fernández J
    J Anim Breed Genet; 2016 Oct; 133(5):357-65. PubMed ID: 26991632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations.
    Bosse M; Megens HJ; Madsen O; Crooijmans RP; Ryder OA; Austerlitz F; Groenen MA; de Cara MA
    Genome Res; 2015 Jul; 25(7):970-81. PubMed ID: 26063737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of genomic coancestry matrices in the optimisation of contributions to maintain genetic diversity at specific regions of the genome.
    Gómez-Romano F; Villanueva B; Fernández J; Woolliams JA; Pong-Wong R
    Genet Sel Evol; 2016 Jan; 48():2. PubMed ID: 26763889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide estimates of coancestry, inbreeding and effective population size in the Spanish Holstein population.
    Rodríguez-Ramilo ST; Fernández J; Toro MA; Hernández D; Villanueva B
    PLoS One; 2015; 10(4):e0124157. PubMed ID: 25880228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Coancestry and Thereby Future Inbreeding by Optimum-Contribution Selection Using Alternative Genomic-Relationship Matrices.
    Gebregiwergis GT; Sørensen AC; Henryon M; Meuwissen T
    Front Genet; 2020; 11():345. PubMed ID: 32425971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using genomic tools to maintain diversity and fitness in conservation programmes.
    de Cara MÁ; Villanueva B; Toro MÁ; Fernández J
    Mol Ecol; 2013 Dec; 22(24):6091-9. PubMed ID: 24128280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A note on the rationale for estimating genealogical coancestry from molecular markers.
    Toro MA; García-Cortés LA; Legarra A
    Genet Sel Evol; 2011 Jul; 43(1):1-10. PubMed ID: 21749687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of genealogical coancestry in plant species using a pedigree reconstruction algorithm and application to an oil palm breeding population.
    Cros D; Sánchez L; Cochard B; Samper P; Denis M; Bouvet JM; Fernández J
    Theor Appl Genet; 2014 Apr; 127(4):981-94. PubMed ID: 24504554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic selection requires genomic control of inbreeding.
    Sonesson AK; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2012 Aug; 44(1):27. PubMed ID: 22898324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance of genetic diversity in subdivided populations using genomic coancestry matrices.
    Morales-González E; Villanueva B; Toro MÁ; Fernández J
    Mol Ecol Resour; 2023 Mar; ():. PubMed ID: 36906916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintaining genetic diversity using molecular coancestry: the effect of marker density and effective population size.
    Gómez-Romano F; Villanueva B; de Cara MA; Fernández J
    Genet Sel Evol; 2013 Oct; 45(1):38. PubMed ID: 24088414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs.
    Gorjanc G; Hickey JM
    Bioinformatics; 2018 Oct; 34(19):3408-3411. PubMed ID: 29722792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of non-random mating on genomic and BLUP selection schemes.
    Nirea KG; Sonesson AK; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2012 Apr; 44(1):11. PubMed ID: 22494646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of rare alleles on estimated genomic relationships from whole genome sequence data.
    Eynard SE; Windig JJ; Leroy G; van Binsbergen R; Calus MP
    BMC Genet; 2015 Mar; 16():24. PubMed ID: 25887220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.