These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25904970)

  • 1. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review.
    Humplík JF; Lazár D; Husičková A; Spíchal L
    Plant Methods; 2015; 11():29. PubMed ID: 25904970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.).
    Humplík JF; Lazár D; Fürst T; Husičková A; Hýbl M; Spíchal L
    Plant Methods; 2015; 11():20. PubMed ID: 25798184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.
    Tschiersch H; Junker A; Meyer RC; Altmann T
    Plant Methods; 2017; 13():54. PubMed ID: 28690669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor-based phenotyping of above-ground plant-pathogen interactions.
    Tanner F; Tonn S; de Wit J; Van den Ackerveken G; Berger B; Plett D
    Plant Methods; 2022 Mar; 18(1):35. PubMed ID: 35313920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-cost and automated phenotyping system "Phenomenon" for multi-sensor in situ monitoring in plant in vitro culture.
    Bethge H; Winkelmann T; Lüdeke P; Rath T
    Plant Methods; 2023 May; 19(1):42. PubMed ID: 37131210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response.
    Banerjee BP; Joshi S; Thoday-Kennedy E; Pasam RK; Tibbits J; Hayden M; Spangenberg G; Kant S
    J Exp Bot; 2020 Jul; 71(15):4604-4615. PubMed ID: 32185382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform.
    Mertens S; Verbraeken L; Sprenger H; De Meyer S; Demuynck K; Cannoot B; Merchie J; De Block J; Vogel JT; Bruce W; Nelissen H; Maere S; Inzé D; Wuyts N
    Plant Methods; 2023 Nov; 19(1):132. PubMed ID: 37996870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.
    Mahlein AK
    Plant Dis; 2016 Feb; 100(2):241-251. PubMed ID: 30694129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.
    Kjaer KH; Ottosen CO
    Sensors (Basel); 2015 Jun; 15(6):13533-47. PubMed ID: 26066990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Straightforward High-Throughput Aboveground Phenotyping Platform for Small- to Medium-Sized Plants.
    Caldwell D; Iyer-Pascuzzi AS
    Methods Mol Biol; 2022; 2539():37-48. PubMed ID: 35895194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated phenotyping of root and shoot growth dynamics in maize reveals specific interaction patterns in inbreds and hybrids and in response to drought.
    Shi R; Seiler C; Knoch D; Junker A; Altmann T
    Front Plant Sci; 2023; 14():1233553. PubMed ID: 37719228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost Automated Vectors and Modular Environmental Sensors for Plant Phenotyping.
    Bagley SA; Atkinson JA; Hunt H; Wilson MH; Pridmore TP; Wells DM
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping.
    Koh JCO; Banerjee BP; Spangenberg G; Kant S
    New Phytol; 2022 Mar; 233(6):2659-2670. PubMed ID: 34997968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing RGB-D Sensors for Close Range Outdoor Agricultural Phenotyping.
    Vit A; Shani G
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of imaging techniques for plant phenotyping.
    Li L; Zhang Q; Huang D
    Sensors (Basel); 2014 Oct; 14(11):20078-111. PubMed ID: 25347588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology.
    Mertens S; Verbraeken L; Sprenger H; Demuynck K; Maleux K; Cannoot B; De Block J; Maere S; Nelissen H; Bonaventure G; Crafts-Brandner SJ; Vogel JT; Bruce W; Inzé D; Wuyts N
    Front Plant Sci; 2021; 12():640914. PubMed ID: 33692820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.