These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 2590507)

  • 1. Electron microscopy of supercoiled pEJ4 DNA containing homopurine.homopyrimidine sequences.
    Stokrová J; Vojtisková M; Palecek E
    J Biomol Struct Dyn; 1989 Apr; 6(5):891-8. PubMed ID: 2590507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual protonated structure in the homopurine.homopyrimidine tract of supercoiled and linearized plasmids recognized by chemical probes.
    Vojtisková M; Palecek E
    J Biomol Struct Dyn; 1987 Oct; 5(2):283-96. PubMed ID: 2856029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical probing of the homopurine.homopyrimidine tract in supercoiled DNA at single-nucleotide resolution.
    Vojtísková M; Mirkin S; Lyamichev V; Voloshin O; Frank-Kamenetskii M; Palecek E
    FEBS Lett; 1988 Jul; 234(2):295-9. PubMed ID: 2839369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA.
    Lyamichev VI; Mirkin SM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1985 Oct; 3(2):327-38. PubMed ID: 3917024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA.
    Voloshin ON; Mirkin SM; Lyamichev VI; Belotserkovskii BP; Frank-Kamenetskii MD
    Nature; 1988 Jun; 333(6172):475-6. PubMed ID: 3374588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure.
    Cherny DI; Jovin TM
    J Mol Biol; 2001 Oct; 313(2):295-307. PubMed ID: 11800558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmium tetroxide probing of local DNA structure in linear and supercoiled plasmids containing curvature-inducing sequences.
    Palecek E; Makaturová-Rasovská E; Diekmann S
    Gen Physiol Biophys; 1988 Aug; 7(4):379-93. PubMed ID: 3181745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of (dG)n.(dC)n under superhelical stress and acid pH.
    Lyamichev VI; Mirkin SM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1987 Oct; 5(2):275-82. PubMed ID: 3271474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Visualization of the cruciform structure of superhelical DNA by use of atomic force microscopy].
    Limanskiĭ AP
    Biofizika; 2000; 45(6):1039-43. PubMed ID: 11155230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA H form requires a homopurine-homopyrimidine mirror repeat.
    Mirkin SM; Lyamichev VI; Drushlyak KN; Dobrynin VN; Filippov SA; Frank-Kamenetskii MD
    Nature; 1987 Dec 3-9; 330(6147):495-7. PubMed ID: 2825028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA.
    Jett SD; Cherny DI; Subramaniam V; Jovin TM
    J Mol Biol; 2000 Jun; 299(3):585-92. PubMed ID: 10835269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopy visualization of oligonucleotide binding to duplex DNA via triplex formation.
    Cherny DI; Malkov VA; Volodin AA; Frank-Kamenetskii MD
    J Mol Biol; 1993 Mar; 230(2):379-83. PubMed ID: 8464052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo.
    Bednar J; Furrer P; Stasiak A; Dubochet J; Egelman EH; Bates AD
    J Mol Biol; 1994 Jan; 235(3):825-47. PubMed ID: 8289322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular DNA triplexes in supercoiled plasmids. II. Effect of base composition and noncentral interruptions on formation and stability.
    Hanvey JC; Shimizu M; Wells RD
    J Biol Chem; 1989 Apr; 264(10):5950-6. PubMed ID: 2647731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H-DNA and Z-DNA in the mouse c-Ki-ras promoter.
    Pestov DG; Dayn A; Siyanova EYu ; George DL; Mirkin SM
    Nucleic Acids Res; 1991 Dec; 19(23):6527-32. PubMed ID: 1754390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A triplex DNA structure of the polypyrimidine: polypurine stretch in the 5' flanking region of the sea urchin arylsulfatase gene.
    Sakamoto N; Akasaka K; Yamamoto T; Shimada H
    Zoolog Sci; 1996 Feb; 13(1):105-9. PubMed ID: 8688804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of homopurine-homopyrimidine tract in superhelical DNA.
    Lyamichev VI; Mirkin SM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1986 Feb; 3(4):667-9. PubMed ID: 3271043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural polymorphism of homopurine-homopyrimidine sequences at neutral pH.
    Kohwi Y; Kohwi-Shigematsu T
    J Mol Biol; 1993 Jun; 231(4):1090-101. PubMed ID: 8515467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic trapping of H-DNA by oligonucleotide binding.
    Belotserkovskii BP; Krasilnikova MM; Veselkov AG; Frank-Kamenetskii MD
    Nucleic Acids Res; 1992 Apr; 20(8):1903-8. PubMed ID: 1579491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a stable triplex from a single DNA strand.
    Sklenár V; Feigon J
    Nature; 1990 Jun; 345(6278):836-8. PubMed ID: 2359461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.