These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25905445)

  • 1. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides.
    Oztekin EK; Smith SE; Hahn DW
    J Biomed Opt; 2015 Apr; 20(4):047006. PubMed ID: 25905445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Laser-Induced Perturbation Spectroscopy for Analysis of Mixtures of the Fluorophores l-Phenylalanine, l-Tyrosine and l-Tryptophan Using a Fluorescence Probe.
    Oztekin EK; Hahn DW
    Photochem Photobiol; 2016 Sep; 92(5):658-66. PubMed ID: 27416797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evaluation of differential laser-induced perturbation spectroscopy as a technique to discriminate emerging skin pathology.
    Kozikowski RT; Smith SE; Lee JA; Castleman WL; Sorg BS; Hahn DW
    J Biomed Opt; 2012 Jun; 17(6):067002. PubMed ID: 22734780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Part I: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver.
    Podstawka E; Ozaki Y; Proniewicz LM
    Appl Spectrosc; 2004 May; 58(5):570-80. PubMed ID: 15165334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Part II: surface-enhanced Raman spectroscopy investigation of methionine containing heterodipeptides adsorbed on colloidal silver.
    Podstawka E; Ozaki Y; Proniewicz LM
    Appl Spectrosc; 2004 May; 58(5):581-90. PubMed ID: 15165335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Part III: Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface.
    Podstawka E; Ozaki Y; Proniewicz LM
    Appl Spectrosc; 2005 Dec; 59(12):1516-26. PubMed ID: 16390592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.
    Balakrishnan G; Hu Y; Nielsen SB; Spiro TG
    Appl Spectrosc; 2005 Jun; 59(6):776-81. PubMed ID: 16053544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.
    István K; Keresztury G; Szép A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of Raman spectra of amino acids using portable instruments: outdoor measurements and comparison.
    Culka A; Jehlička J; Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):978-83. PubMed ID: 20863748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational analysis of dipeptides in aqueous solution. II. Molecular structure of glycine and alanine dipeptides by depolarized Rayleigh scattering and laser Raman spectroscopy.
    Avignon M; Garrigou-Lagrange C; Bothorel P
    Biopolymers; 1973; 12(7):1651-69. PubMed ID: 4741163
    [No Abstract]   [Full Text] [Related]  

  • 12. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light.
    Feng S; Chen R; Lin J; Pan J; Wu Y; Li Y; Chen J; Zeng H
    Biosens Bioelectron; 2011 Mar; 26(7):3167-74. PubMed ID: 21227679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 212.8 nm laser photolysis of aromatic and aliphatic amino acids and related peptides.
    Repeyev YA; Khoroshilova V; Nikogosyan DN
    J Photochem Photobiol B; 1992 Feb; 12(3):259-74. PubMed ID: 1635011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy of white wines.
    Martin C; Bruneel JL; Guyon F; Médina B; Jourdes M; Teissedre PL; Guillaume F
    Food Chem; 2015 Aug; 181():235-40. PubMed ID: 25794745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectra of amino acids and their aqueous solutions.
    Zhu G; Zhu X; Fan Q; Wan X
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1187-95. PubMed ID: 21242101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source.
    Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C
    Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic correction of continuum background in laser-induced breakdown and Raman spectrometry.
    Gornushkin IB; Eagan PE; Novikov AB; Smith BW; Winefordner JD
    Appl Spectrosc; 2003 Feb; 57(2):197-207. PubMed ID: 14610958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies on IR, Raman, and surface enhanced Raman scattering spectroscopy of dipeptides containing ΔAla and ΔPhe.
    Malek K; Makowski M; Królikowska A; Bukowska J
    J Phys Chem B; 2012 Feb; 116(4):1414-25. PubMed ID: 22208201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Side chain dependence of intensity and wavenumber position of amide I' in IR and visible Raman spectra of XA and AX dipeptides.
    Measey T; Hagarman A; Eker F; Griebenow K; Schweitzer-Stenner R
    J Phys Chem B; 2005 Apr; 109(16):8195-205. PubMed ID: 16851958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy.
    Khoshroo H; Khadem H; Bahreini M; Tavassoli SH; Hadian J
    Appl Opt; 2015 Nov; 54(32):9533-9. PubMed ID: 26560783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.