These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25905464)

  • 1. DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70.
    Chiappori F; Fumian M; Milanesi L; Merelli I
    PLoS One; 2015; 10(4):e0124563. PubMed ID: 25905464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(2):245-52. PubMed ID: 17565388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of novel peptidic DnaK ligands.
    Liebscher M; Haupt K; Yu C; Jahreis G; Lücke C; Schiene-Fischer C
    Chembiochem; 2010 Aug; 11(12):1727-37. PubMed ID: 20648511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket.
    Leu JI; Zhang P; Murphy ME; Marmorstein R; George DL
    ACS Chem Biol; 2014 Nov; 9(11):2508-16. PubMed ID: 25148104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KLR-70: A Novel Cationic Inhibitor of the Bacterial Hsp70 Chaperone.
    Dalphin MD; Stangl AJ; Liu Y; Cavagnero S
    Biochemistry; 2020 May; 59(20):1946-1960. PubMed ID: 32326704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of chaperone-dependent bacterial ribosome biogenesis.
    Al Refaii A; Alix JH
    Methods Mol Med; 2008; 142():75-85. PubMed ID: 18437307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small molecule DnaK modulators targeting the beta-domain.
    Cellitti J; Zhang Z; Wang S; Wu B; Yuan H; Hasegawa P; Guiney DG; Pellecchia M
    Chem Biol Drug Des; 2009 Oct; 74(4):349-57. PubMed ID: 19694756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acyl benzamido antibacterials based on inhibition of DnaK-catalyzed protein folding.
    Liebscher M; Jahreis G; Lücke C; Grabley S; Raina S; Schiene-Fischer C
    J Biol Chem; 2007 Feb; 282(7):4437-4446. PubMed ID: 17170117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.
    Stetz G; Verkhivker GM
    J Chem Inf Model; 2016 Aug; 56(8):1490-517. PubMed ID: 27447295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DnaK duplication and specialization in bacteria correlates with increased proteome complexity.
    Pan Z; Zhuo L; Wan T-y; Chen R-y; Li Y-z
    mSystems; 2024 Apr; 9(4):e0115423. PubMed ID: 38530057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(3):509-22. PubMed ID: 17882322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone.
    Lee JH; Zhang D; Hughes C; Okuno Y; Sekhar A; Cavagnero S
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4206-15. PubMed ID: 26195753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-dependent peptide binding orientation by the molecular chaperone DnaK.
    Tapley TL; Cupp-Vickery JR; Vickery LE
    Biochemistry; 2005 Sep; 44(37):12307-15. PubMed ID: 16156644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the conformation of a client protein through the Hsp70 functional cycle.
    Sekhar A; Rosenzweig R; Bouvignies G; Kay LE
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10395-400. PubMed ID: 26240333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J; Linke K; Jatzek A; Jakob U
    Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics of the DnaK-peptide complex.
    Popp S; Packschies L; Radzwill N; Vogel KP; Steinhoff HJ; Reinstein J
    J Mol Biol; 2005 Apr; 347(5):1039-52. PubMed ID: 15784262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of allosteric signaling in DnaK and BiP using mutual information between simulated residue conformations.
    Schneider M; Antes I
    Proteins; 2023 Feb; 91(2):237-255. PubMed ID: 36111439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL.
    Landry SJ; Jordan R; McMacken R; Gierasch LM
    Nature; 1992 Jan; 355(6359):455-7. PubMed ID: 1346469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural identification of DnaK binding sites within bovine and sheep bactenecin Bac7.
    Zahn M; Kieslich B; Berthold N; Knappe D; Hoffmann R; Strater N
    Protein Pept Lett; 2014 Apr; 21(4):407-12. PubMed ID: 24164259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.