BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25905747)

  • 1. Rapid visual detection of eight meat species using optical thin-film biosensor chips.
    Wang W; Zhu Y; Chen Y; Xu X; Zhou G
    J AOAC Int; 2015; 98(2):410-4. PubMed ID: 25905747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous detection of eight food allergens using optical thin-film biosensor chips.
    Wang W; Han J; Wu Y; Yuan F; Chen Y; Ge Y
    J Agric Food Chem; 2011 Jul; 59(13):6889-94. PubMed ID: 21615118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral flow test for meat authentication with visual detection.
    Magiati M; Myridaki VM; Christopoulos TK; Kalogianni DP
    Food Chem; 2019 Feb; 274():803-807. PubMed ID: 30373013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products.
    Uddin SMK; Hossain MAM; Chowdhury ZZ; Johan MRB
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Aug; 38(8):1273-1288. PubMed ID: 34077338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A visual method to detect meat adulteration by recombinase polymerase amplification combined with lateral flow dipstick.
    Lin L; Zheng Y; Huang H; Zhuang F; Chen H; Zha G; Yang P; Wang Z; Kong M; Wei H; Zou X; Lin M
    Food Chem; 2021 Aug; 354():129526. PubMed ID: 33735694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system.
    Furutani S; Hagihara Y; Nagai H
    Meat Sci; 2017 Sep; 131():56-59. PubMed ID: 28475952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a PCR-based lateral flow strip assay for the simple, rapid, and accurate detection of pork in meat and meat products.
    Yin R; Sun Y; Wang K; Feng N; Zhang H; Xiao M
    Food Chem; 2020 Jul; 318():126541. PubMed ID: 32151928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPR enhanced DNA biosensor for sensitive detection of donkey meat adulteration.
    Mansouri M; Fathi F; Jalili R; Shoeibie S; Dastmalchi S; Khataee A; Rashidi MR
    Food Chem; 2020 Nov; 331():127163. PubMed ID: 32593037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid and reliable multiplex PCR assay for simultaneous detection of fourteen animal species in two tubes.
    Li J; Li J; Xu S; Xiong S; Yang J; Chen X; Wang S; Qiao X; Zhou T
    Food Chem; 2019 Oct; 295():395-402. PubMed ID: 31174774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex TaqMan locked nucleic acid real-time PCR for the differential identification of various meat and meat products.
    Xu R; Wei S; Zhou G; Ren J; Liu Z; Tang S; Cheung PCK; Wu X
    Meat Sci; 2018 Mar; 137():41-46. PubMed ID: 29149628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I.
    Cao Y; Zheng K; Jiang J; Wu J; Shi F; Song X; Jiang Y
    Food Chem; 2018 Nov; 266():73-78. PubMed ID: 30381228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Duplex PCR-ELONA for the detection of pork adulteration in meat products.
    Skouridou V; Tomaso H; Rau J; Bashammakh AS; El-Shahawi MS; Alyoubi AO; O'Sullivan CK
    Food Chem; 2019 Jul; 287():354-362. PubMed ID: 30857710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a monoclonal antibody specific to cooked mammalian meats.
    Hsieh YH; Sheu SC; Bridgman RC
    J Food Prot; 1998 Apr; 61(4):476-81. PubMed ID: 9709213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods.
    Tanabe S; Hase M; Yano T; Sato M; Fujimura T; Akiyama H
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3131-5. PubMed ID: 18071237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes.
    Barakat H; El-Garhy HA; Moustafa MM
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9805-16. PubMed ID: 25324129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerase chain reaction with lateral flow sensor assay for the identification of horse meat in raw and processed meat products.
    Chen Y; Wang Y; Xiao M; Wei S; Yang H; Yin R
    Food Chem; 2021 May; 345():128840. PubMed ID: 33601658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between a novel calpastatin biosensor and traditional calpastatin assay techniques.
    Bratcher CL; Grant SA; Stringer RC; Lorenzen CL
    Biosens Bioelectron; 2008 May; 23(10):1429-34. PubMed ID: 18243684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development and application of real-time PCR for identification and detection of horse meat in animal-origin products].
    Li N; Wang J; Shen Q; Han C; Zhang J; Li F; Xu J; Jiang T
    Wei Sheng Yan Jiu; 2013 Nov; 42(6):982-6. PubMed ID: 24459914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Rapid On-Site Method for the Detection of Chicken Meat in Processed Ground Meat Products by Using a Direct Ultrafast PCR System.
    Sul S; Kim MJ; Lee JM; Kim SY; Kim HY
    J Food Prot; 2020 Jun; 83(6):984-990. PubMed ID: 32034408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-site Method for Beef Detection Based on Strand Exchange Amplification.
    Wang X; Yan C; Wei M; Shi C; Niu S; Ma C
    Anal Sci; 2019 Mar; 35(3):337-341. PubMed ID: 30449835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.