These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25906422)

  • 1. Pathways Mediating Activity-Induced Enhancement of Recovery From Peripheral Nerve Injury.
    Sabatier MJ; English AW
    Exerc Sport Sci Rev; 2015 Jul; 43(3):163-71. PubMed ID: 25906422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of neurotrophic factors in nerve regeneration.
    Gordon T
    Neurosurg Focus; 2009 Feb; 26(2):E3. PubMed ID: 19228105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of peripheral nerve regeneration due to treadmill training and electrical stimulation is dependent on androgen receptor signaling.
    Thompson NJ; Sengelaub DR; English AW
    Dev Neurobiol; 2014 May; 74(5):531-40. PubMed ID: 24293191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BDNF promotes the axonal regrowth after sciatic nerve crush through intrinsic neuronal capability upregulation and distal portion protection.
    Zheng J; Sun J; Lu X; Zhao P; Li K; Li L
    Neurosci Lett; 2016 May; 621():1-8. PubMed ID: 27057731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries.
    Gordon T; Borschel GH
    Exp Neurol; 2017 Jan; 287(Pt 3):331-347. PubMed ID: 26795087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise, neurotrophins, and axon regeneration in the PNS.
    English AW; Wilhelm JC; Ward PJ
    Physiology (Bethesda); 2014 Nov; 29(6):437-45. PubMed ID: 25362637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord.
    Koda M; Hashimoto M; Murakami M; Yoshinaga K; Ikeda O; Yamazaki M; Koshizuka S; Kamada T; Moriya H; Shirasawa H; Sakao S; Ino H
    J Neurotrauma; 2004 Mar; 21(3):329-37. PubMed ID: 15115607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors.
    Santos D; González-Pérez F; Giudetti G; Micera S; Udina E; Del Valle J; Navarro X
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28036084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury.
    Cobianchi S; Casals-Diaz L; Jaramillo J; Navarro X
    Exp Neurol; 2013 Feb; 240():157-67. PubMed ID: 23201096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in the effectiveness of treadmill training in enhancing axon regeneration in injured peripheral nerves.
    Wood K; Wilhelm JC; Sabatier MJ; Liu K; Gu J; English AW
    Dev Neurobiol; 2012 May; 72(5):688-98. PubMed ID: 21805686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo.
    Pernet V; Di Polo A
    Brain; 2006 Apr; 129(Pt 4):1014-26. PubMed ID: 16418178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pros and cons of growth factors and cytokines in peripheral axon regeneration.
    Klimaschewski L; Hausott B; Angelov DN
    Int Rev Neurobiol; 2013; 108():137-71. PubMed ID: 24083434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways regulating modality-specific axonal regeneration in peripheral nerve.
    Wood MD; Mackinnon SE
    Exp Neurol; 2015 Mar; 265():171-5. PubMed ID: 25681572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury.
    Sanna MD; Ghelardini C; Galeotti N
    Brain Res; 2017 Mar; 1659():55-63. PubMed ID: 28111162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing axon regeneration after peripheral nerve injury with magnetic resonance tractography.
    Simon NG; Narvid J; Cage T; Banerjee S; Ralph JW; Engstrom JW; Kliot M; Chin C
    Neurology; 2014 Oct; 83(15):1382-4. PubMed ID: 25186862
    [No Abstract]   [Full Text] [Related]  

  • 16. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts.
    Hu Y; Arulpragasam A; Plant GW; Hendriks WT; Cui Q; Harvey AR
    Exp Neurol; 2007 Oct; 207(2):314-28. PubMed ID: 17689533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunological demyelination enhances nerve regeneration after acute transection injury in the adult rat sciatic nerve.
    Kosins AM; Scholz T; Lin M; Evans GR; Keirstead HS
    Ann Plast Surg; 2012 Mar; 68(3):290-4. PubMed ID: 22356781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers.
    Gordon T
    Hand Clin; 2016 May; 32(2):103-17. PubMed ID: 27094884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.
    Huang J; Zhang Y; Lu L; Hu X; Luo Z
    Eur J Neurosci; 2013 Dec; 38(12):3691-701. PubMed ID: 24118464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.
    Gordon T
    Neurotherapeutics; 2016 Apr; 13(2):295-310. PubMed ID: 26754579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.