These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 2590688)
1. [One- and two-electron reduction of ubiquinone homologs by NADH- dehydrogenase preparations from the mitochondrial respiratory chain]. Sled' VD; Zinich VN; Kotliar AB Biokhimiia; 1989 Sep; 54(9):1571-5. PubMed ID: 2590688 [TBL] [Abstract][Full Text] [Related]
2. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577 [TBL] [Abstract][Full Text] [Related]
3. Properties of a semiquinone anion located in the QH2:cytochrome c oxidoreductase segment of the mitochondrial respiratory chain. de Vries S; Berden JA; Slater EC FEBS Lett; 1980 Dec; 122(1):143-8. PubMed ID: 7215541 [No Abstract] [Full Text] [Related]
4. [Rotenone-insensitive NADH oxydation in mitochondrial suspension occurs by NADH dehydrogenase of respiratory chain fragments]. Sharova IV; Vekshin NL Biofizika; 2004; 49(5):814-21. PubMed ID: 15526465 [TBL] [Abstract][Full Text] [Related]
5. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Davies KJ; Doroshow JH J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345 [TBL] [Abstract][Full Text] [Related]
6. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Turrens JF; Boveris A Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247 [TBL] [Abstract][Full Text] [Related]
7. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone. De Jong AM; Albracht SP Eur J Biochem; 1994 Jun; 222(3):975-82. PubMed ID: 8026508 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. Davies KJ; Doroshow JH; Hochstein P FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008 [No Abstract] [Full Text] [Related]
9. [Participation of the quinone acceptor in the transition of complex I from an inactive to active state]. Maklashina EO; Vinogradov AD Biokhimiia; 1994 Nov; 59(11):1638-45. PubMed ID: 7873673 [TBL] [Abstract][Full Text] [Related]
10. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether. Suzuki H; Wakai M; Ozawa T Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534 [TBL] [Abstract][Full Text] [Related]
11. The effect of rate limitation by cytochrome c on the redox state of the ubiquinone pool in reconstituted NADH: cytochrome c reductase. Reed JS; Ragan CI Biochem J; 1987 Nov; 247(3):657-62. PubMed ID: 2827635 [TBL] [Abstract][Full Text] [Related]
12. Further observations on the inhibition of NADH oxidase by short chain ubiquinone homologs. Pasquali P; Landi L; Cabrini L; Sechi AM; Lenaz G Boll Soc Ital Biol Sper; 1982 May; 58(10):585-90. PubMed ID: 6810905 [No Abstract] [Full Text] [Related]
13. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals. Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438 [TBL] [Abstract][Full Text] [Related]
14. Bovine heart NADH-ubiquinone oxidoreductase contains one molecule of ubiquinone with ten isoprene units as one of the cofactors. Shinzawa-Itoh K; Seiyama J; Terada H; Nakatsubo R; Naoki K; Nakashima Y; Yoshikawa S Biochemistry; 2010 Jan; 49(3):487-92. PubMed ID: 19961238 [TBL] [Abstract][Full Text] [Related]
15. Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins. Tormo JR; González MC; Cortes D; Estornell E Arch Biochem Biophys; 1999 Sep; 369(1):119-26. PubMed ID: 10462447 [TBL] [Abstract][Full Text] [Related]
16. Mode of inhibitory action of Deltalac-acetogenins, a new class of inhibitors of bovine heart mitochondrial complex I. Murai M; Ichimaru N; Abe M; Nishioka T; Miyoshi H Biochemistry; 2006 Aug; 45(32):9778-87. PubMed ID: 16893179 [TBL] [Abstract][Full Text] [Related]
17. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Takeshige K; Minakami S Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543 [TBL] [Abstract][Full Text] [Related]
18. Reversible inhibition of electron transfer in the ubiquinol. Cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. Brustovetsky NN; Amerkhanov ZG; Popova EYu ; Konstantinov AA FEBS Lett; 1990 Apr; 263(1):73-6. PubMed ID: 2332054 [TBL] [Abstract][Full Text] [Related]
19. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme. Albracht SP; Bakker PT Biochim Biophys Acta; 1986 Jul; 850(3):423-8. PubMed ID: 3015207 [TBL] [Abstract][Full Text] [Related]
20. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles. van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]