These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 25906997)
1. Damage-tolerant nanotwinned metals with nanovoids under radiation environments. Chen Y; Yu KY; Liu Y; Shao S; Wang H; Kirk MA; Wang J; Zhang X Nat Commun; 2015 Apr; 6():7036. PubMed ID: 25906997 [TBL] [Abstract][Full Text] [Related]
2. In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Li J; Yu KY; Chen Y; Song M; Wang H; Kirk MA; Li M; Zhang X Nano Lett; 2015 May; 15(5):2922-7. PubMed ID: 25768722 [TBL] [Abstract][Full Text] [Related]
3. Nanovoid formation mechanism in nanotwinned Cu. Fan C; Wang H; Zhang X Discov Nano; 2024 Mar; 19(1):43. PubMed ID: 38468015 [TBL] [Abstract][Full Text] [Related]
4. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Bufford D; Liu Y; Wang J; Wang H; Zhang X Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688 [TBL] [Abstract][Full Text] [Related]
5. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Yu KY; Bufford D; Sun C; Liu Y; Wang H; Kirk MA; Li M; Zhang X Nat Commun; 2013; 4():1377. PubMed ID: 23340417 [TBL] [Abstract][Full Text] [Related]
6. Detwinning through migration of twin boundaries in nanotwinned Cu films under Du J; Wu Z; Fu E; Liang Y; Wang X; Wang P; Yu K; Ding X; Li M; Kirk M Sci Technol Adv Mater; 2018; 19(1):212-220. PubMed ID: 29535796 [TBL] [Abstract][Full Text] [Related]
7. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation. Hu X; Ni Y; Zhang Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical nanotwins in single-crystal-like nickel with high strength and corrosion resistance produced via a hybrid technique. Li Q; Xue S; Price P; Sun X; Ding J; Shang Z; Fan Z; Wang H; Zhang Y; Chen Y; Wang H; Hattar K; Zhang X Nanoscale; 2020 Jan; 12(3):1356-1365. PubMed ID: 31854411 [TBL] [Abstract][Full Text] [Related]
9. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au. Li J; Fan C; Ding J; Xue S; Chen Y; Li Q; Wang H; Zhang X Sci Rep; 2017 Jan; 7():39484. PubMed ID: 28045044 [TBL] [Abstract][Full Text] [Related]
10. Nanoprecipitates to Enhance Radiation Tolerance in High-Entropy Alloys. Kombaiah B; Zhou Y; Jin K; Manzoor A; Poplawsky JD; Aguiar JA; Bei H; Aidhy DS; Edmondson PD; Zhang Y ACS Appl Mater Interfaces; 2023 Jan; 15(3):3912-3924. PubMed ID: 36623205 [TBL] [Abstract][Full Text] [Related]
11. Ultra-strong nanotwinned Al-Ni solid solution alloys with significant plasticity. Zhang YF; Li Q; Xue SC; Ding J; Xie DY; Li J; Niu T; Wang H; Wang H; Wang J; Zhang X Nanoscale; 2018 Nov; 10(46):22025-22034. PubMed ID: 30452036 [TBL] [Abstract][Full Text] [Related]
12. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures. Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617 [TBL] [Abstract][Full Text] [Related]
13. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Chan TC; Lin YM; Tsai HW; Wang ZM; Liao CN; Chueh YL Nanoscale; 2014 Jul; 6(13):7332-8. PubMed ID: 24862643 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of lattice damage formation in tantalum irradiated at variable temperatures. Ipatova I; Wady PT; Shubeita SM; Barcellini C; Impagnatiello A; Jimenez-Melero E J Microsc; 2018 Apr; 270(1):110-117. PubMed ID: 29091277 [TBL] [Abstract][Full Text] [Related]
15. Localized Pulsed Electrodeposition Process for Three-Dimensional Printing of Nanotwinned Metallic Nanostructures. Daryadel S; Behroozfar A; Morsali SR; Moreno S; Baniasadi M; Bykova J; Bernal RA; Minary-Jolandan M Nano Lett; 2018 Jan; 18(1):208-214. PubMed ID: 29257699 [TBL] [Abstract][Full Text] [Related]
16. Deformation mechanisms in nanotwinned metal nanopillars. Jang D; Li X; Gao H; Greer JR Nat Nanotechnol; 2012 Sep; 7(9):594-601. PubMed ID: 22796745 [TBL] [Abstract][Full Text] [Related]
17. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments. Sun C; Zheng S; Wei CC; Wu Y; Shao L; Yang Y; Hartwig KT; Maloy SA; Zinkle SJ; Allen TR; Wang H; Zhang X Sci Rep; 2015 Jan; 5():7801. PubMed ID: 25588326 [TBL] [Abstract][Full Text] [Related]
18. Interaction of dislocations with carbon-decorated dislocation loops in bcc Fe: an atomistic study. Terentyev D; Anento N; Serra A J Phys Condens Matter; 2012 Nov; 24(45):455402. PubMed ID: 23085823 [TBL] [Abstract][Full Text] [Related]
19. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals. Ke X; Ye J; Pan Z; Geng J; Besser MF; Qu D; Caro A; Marian J; Ott RT; Wang YM; Sansoz F Nat Mater; 2019 Nov; 18(11):1207-1214. PubMed ID: 31548629 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent dislocation-twin interactions. Wang J; Cao G; Zhang Z; Sansoz F Nanoscale; 2019 Jul; 11(26):12672-12679. PubMed ID: 31237593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]