These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25907034)

  • 1. Food-associated stimuli enhance barrier properties of gastrointestinal mucus.
    Yildiz HM; Speciner L; Ozdemir C; Cohen DE; Carrier RL
    Biomaterials; 2015 Jun; 54():1-8. PubMed ID: 25907034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids.
    Yildiz HM; McKelvey CA; Marsac PJ; Carrier RL
    J Drug Target; 2015; 23(7-8):768-74. PubMed ID: 26453172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation.
    Boegh M; García-Díaz M; Müllertz A; Nielsen HM
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):136-43. PubMed ID: 25622791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the permeability of human and porcine small intestinal mucus for particle transport studies.
    Krupa L; Bajka B; Staroń R; Dupont D; Singh H; Gutkowski K; Macierzanka A
    Sci Rep; 2020 Nov; 10(1):20290. PubMed ID: 33219331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids alter microbial transport through intestinal mucus.
    Carlson TL; Yildiz H; Dar Z; Lock JY; Carrier RL
    PLoS One; 2018; 13(12):e0209151. PubMed ID: 30576356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrophobic barrier properties of gastrointestinal mucus.
    Lichtenberger LM
    Annu Rev Physiol; 1995; 57():565-83. PubMed ID: 7778878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine.
    Wilcox MD; Van Rooij LK; Chater PI; Pereira de Sousa I; Pearson JP
    Eur J Pharm Biopharm; 2015 Oct; 96():484-7. PubMed ID: 25758122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability of the small intestinal mucus for physiologically relevant studies: Impact of mucus location and ex vivo treatment.
    Macierzanka A; Mackie AR; Krupa L
    Sci Rep; 2019 Nov; 9(1):17516. PubMed ID: 31772308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of small intestinal mucus structure on particle transport ex vivo.
    Bajka BH; Rigby NM; Cross KL; Macierzanka A; Mackie AR
    Colloids Surf B Biointerfaces; 2015 Nov; 135():73-80. PubMed ID: 26241918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macro- and Microrheological Properties of Mucus Surrogates in Comparison to Native Intestinal and Pulmonary Mucus.
    Huck BC; Hartwig O; Biehl A; Schwarzkopf K; Wagner C; Loretz B; Murgia X; Lehr CM
    Biomacromolecules; 2019 Sep; 20(9):3504-3512. PubMed ID: 31419118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal transport of lipid digesta in human and porcine small intestinal mucus.
    Macierzanka A; Ménard O; Dupont D; Gutkowski K; Staroń R; Krupa L
    Food Res Int; 2020 Dec; 138(Pt A):109752. PubMed ID: 33292935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing interregional differences in the rheological properties and composition of rat small intestinal mucus.
    Klitgaard M; Jacobsen J; Kristensen MN; Berthelsen R; Müllertz A
    Drug Deliv Transl Res; 2024 Nov; 14(11):3309-3320. PubMed ID: 38526635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-carrier systems: Strategies to overcome the mucus gel barrier.
    Dünnhaupt S; Kammona O; Waldner C; Kiparissides C; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Oct; 96():447-53. PubMed ID: 25712487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease-functionalized mucus penetrating microparticles: In-vivo evidence for their potential.
    Mahmood A; Laffleur F; Leonaviciute G; Bernkop-Schnürch A
    Int J Pharm; 2017 Oct; 532(1):177-184. PubMed ID: 28864390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption.
    Boegh M; Baldursdóttir SG; Müllertz A; Nielsen HM
    Eur J Pharm Biopharm; 2014 Jul; 87(2):227-35. PubMed ID: 24413146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: impact of mucus structure and extracellular DNA.
    Macierzanka A; Mackie AR; Bajka BH; Rigby NM; Nau F; Dupont D
    PLoS One; 2014; 9(4):e95274. PubMed ID: 24755941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin.
    Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y
    ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles.
    Yuan H; Chen CY; Chai GH; Du YZ; Hu FQ
    Mol Pharm; 2013 May; 10(5):1865-73. PubMed ID: 23495754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.