These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 25907197)
1. A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy- first investigations of single biological cells. Alrifaiy A; Borg J; Lindahl OA; Ramser K Biomed Eng Online; 2015 Apr; 14():36. PubMed ID: 25907197 [TBL] [Abstract][Full Text] [Related]
2. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease. Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725 [TBL] [Abstract][Full Text] [Related]
3. How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte. Alrifaiy A; Ramser K Biomed Opt Express; 2011 Aug; 2(8):2299-306. PubMed ID: 21833366 [TBL] [Abstract][Full Text] [Related]
4. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip. Chang D; Sakuma S; Kera K; Uozumi N; Arai F Lab Chip; 2018 Apr; 18(8):1241-1249. PubMed ID: 29568834 [TBL] [Abstract][Full Text] [Related]
5. Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording. Harrison RR; Kolb I; Kodandaramaiah SB; Chubykin AA; Yang A; Bear MF; Boyden ES; Forest CR J Neurophysiol; 2015 Feb; 113(4):1275-82. PubMed ID: 25429119 [TBL] [Abstract][Full Text] [Related]
8. Development of a medical fiber-optic oxygen sensor based on optical absorption change. Wolthuis RA; McCrae D; Hartl JC; Saaski E; Mitchell GL; Garcin K; Willard R IEEE Trans Biomed Eng; 1992 Feb; 39(2):185-93. PubMed ID: 1612622 [TBL] [Abstract][Full Text] [Related]
9. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341 [TBL] [Abstract][Full Text] [Related]
10. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping. De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730 [TBL] [Abstract][Full Text] [Related]
11. Nondestructive Identification and Accurate Isolation of Single Cells through a Chip with Raman Optical Tweezers. Fang T; Shang W; Liu C; Xu J; Zhao D; Liu Y; Ye A Anal Chem; 2019 Aug; 91(15):9932-9939. PubMed ID: 31251569 [TBL] [Abstract][Full Text] [Related]
12. Single-cell measurement of red blood cell oxygen affinity. Di Caprio G; Stokes C; Higgins JM; Schonbrun E Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9984-9. PubMed ID: 26216973 [TBL] [Abstract][Full Text] [Related]
13. Integrating Optical Fiber Bridges in Microfluidic Devices to Create Multiple Excitation/Detection Points for Single Cell Analysis. Patabadige DE; Sadeghi J; Kalubowilage M; Bossmann SH; Culbertson AH; Latifi H; Culbertson CT Anal Chem; 2016 Oct; 88(20):9920-9925. PubMed ID: 27626461 [TBL] [Abstract][Full Text] [Related]
14. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells. Ahlawat S; Kumar N; Uppal A; Kumar Gupta P J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235 [TBL] [Abstract][Full Text] [Related]
15. High quality ion channel analysis on a chip with the NPC technology. Brüggemann A; George M; Klau M; Beckler M; Steindl J; Behrends JC; Fertig N Assay Drug Dev Technol; 2003 Oct; 1(5):665-73. PubMed ID: 15090239 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device. Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855 [TBL] [Abstract][Full Text] [Related]
17. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer. Li Z; Yang J; Liu S; Jiang X; Wang H; Hu X; Xue S; He S; Xing X Opt Express; 2018 Dec; 26(26):34665-34674. PubMed ID: 30650887 [TBL] [Abstract][Full Text] [Related]
18. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application. Danker T; Braun F; Silbernagl N; Guenther E Assay Drug Dev Technol; 2016 Mar; 14(2):144-55. PubMed ID: 26991363 [TBL] [Abstract][Full Text] [Related]
19. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells. Liu R; Spicer G; Chen S; Zhang HF; Yi J; Backman V J Biomed Opt; 2017 Feb; 22(2):25002. PubMed ID: 28157244 [TBL] [Abstract][Full Text] [Related]
20. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]