These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25907438)

  • 1. Grammar-based compression approach to extraction of common rules among multiple trees of glycans and RNAs.
    Zhao Y; Hayashida M; Cao Y; Hwang J; Akutsu T
    BMC Bioinformatics; 2015 Apr; 16():128. PubMed ID: 25907438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integer programming-based method for grammar-based tree compression and its application to pattern extraction of glycan tree structures.
    Zhao Y; Hayashida M; Akutsu T
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S4. PubMed ID: 21172054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic programming algorithm to predict synthesis processes of tree-structured compounds with graph grammar.
    Zhao Y; Tamura T; Hayashida M; Akutsu T
    Genome Inform; 2010; 24():218-29. PubMed ID: 22081602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures.
    Fukagawa D; Tamura T; Takasu A; Tomita E; Akutsu T
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S13. PubMed ID: 21342542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clique-based method using dynamic programming for computing edit distance between unordered trees.
    Mori T; Tamura T; Fukagawa D; Takasu A; Tomita E; Akutsu T
    J Comput Biol; 2012 Oct; 19(10):1089-104. PubMed ID: 23057820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure.
    Liu Q; Yang Y; Chen C; Bu J; Zhang Y; Ye X
    BMC Bioinformatics; 2008 Mar; 9():176. PubMed ID: 18373878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Bioinformatics; 2005 Jun; 21(11):2611-7. PubMed ID: 15784748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithmic height compression of unordered trees.
    Ben-Naoum F; Godin C
    J Theor Biol; 2016 Jan; 389():237-52. PubMed ID: 26551155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The language of RNA: a formal grammar that includes pseudoknots.
    Rivas E; Eddy SR
    Bioinformatics; 2000 Apr; 16(4):334-40. PubMed ID: 10869031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pair hidden Markov models on tree structures.
    Sakakibara Y
    Bioinformatics; 2003; 19 Suppl 1():i232-40. PubMed ID: 12855464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of glycan structure from tandem mass spectra.
    Böcker S; Kehr B; Rasche F
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):976-86. PubMed ID: 21173459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving stochastic context--free grammars for RNA secondary structure prediction.
    Wj Anderson J; Tataru P; Staines J; Hein J; Lyngsø R
    BMC Bioinformatics; 2012 May; 13():78. PubMed ID: 22559985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Gibbs sampling approach to detection of tree motifs.
    Meireles LM; Akutsu T
    Genome Inform; 2005; 16(1):34-43. PubMed ID: 16362904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for discovering common patterns from two RNA secondary structures and its application to structural repeat detection.
    Hua L; Wang JT; Ji X; Malhotra A; Khaladkar M; Shapiro BA; Zhang K
    J Bioinform Comput Biol; 2012 Aug; 10(4):1250001. PubMed ID: 22809414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous Compression of Large Collections of Evolutionary Trees.
    Matthews SJ
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):807-14. PubMed ID: 26357320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithms for Regular Tree Grammar Network Search and Their Application to Mining Human-viral Infection Patterns.
    Smoly I; Carmel A; Shemer-Avni Y; Yeger-Lotem E; Ziv-Ukelson M
    J Comput Biol; 2016 Mar; 23(3):165-79. PubMed ID: 26953875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. imPhy: Imputing Phylogenetic Trees with Missing Information Using Mathematical Programming.
    Yasui N; Vogiatzis C; Yoshida R; Fukumizu K
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1222-1230. PubMed ID: 30507538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing an A* algorithm for calculating edit distance between rooted-unordered trees.
    Horesh Y; Mehr R; Unger R
    J Comput Biol; 2006; 13(6):1165-76. PubMed ID: 16901235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.