These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1079 related articles for article (PubMed ID: 25907469)
1. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. Osman F; Hodzic E; Kwon SJ; Wang J; Vidalakis G J Virol Methods; 2015 Aug; 220():64-75. PubMed ID: 25907469 [TBL] [Abstract][Full Text] [Related]
2. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. Saponari M; Loconsole G; Liao HH; Jiang B; Savino V; Yokomi RK J Virol Methods; 2013 Nov; 193(2):478-86. PubMed ID: 23891873 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a multiplex quantitative PCR assay for the rapid detection of Grapevine virus A, B and D. Osman F; Hodzic E; Omanska-Klusek A; Olineka T; Rowhani A J Virol Methods; 2013 Dec; 194(1-2):138-45. PubMed ID: 23973785 [TBL] [Abstract][Full Text] [Related]
4. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays. Choudhary N; Wei G; Govindarajulu A; Roy A; Li W; Picton DD; Nakhla MK; Levy L; Brlansky RH J Virol Methods; 2015 Nov; 224():105-9. PubMed ID: 26341059 [TBL] [Abstract][Full Text] [Related]
5. Calculation of diagnostic parameters of advanced serological and molecular tissue-print methods for detection of Citrus tristeza virus: a model for other plant pathogens. Vidal E; Yokomi RK; Moreno A; Bertolini E; Cambra M Phytopathology; 2012 Jan; 102(1):114-21. PubMed ID: 21879789 [TBL] [Abstract][Full Text] [Related]
6. Rapid differentiation and identification of potential severe strains of Citrus tristeza virus by real-time reverse transcription-polymerase chain reaction assays. Yokomi RK; Saponari M; Sieburth PJ Phytopathology; 2010 Apr; 100(4):319-27. PubMed ID: 20205535 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. Panno S; Davino S; Rubio L; Rangel E; Davino M; García-Hernández J; Olmos A J Virol Methods; 2012 Dec; 186(1-2):152-6. PubMed ID: 22939978 [TBL] [Abstract][Full Text] [Related]
10. Production of monoclonal antibodies for detection of Citrus leprosis virus C in enzyme-linked immuno-assays and immunocapture reverse transcription-polymerase chain reaction. Choudhary N; Roy A; Govindarajulu A; Nakhla MK; Levy L; Brlansky RH J Virol Methods; 2014 Sep; 206():144-9. PubMed ID: 24956418 [TBL] [Abstract][Full Text] [Related]
11. A multiplex polymerase chain reaction method for reliable, sensitive and simultaneous detection of multiple viruses in citrus trees. Roy A; Fayad A; Barthe G; Brlansky RH J Virol Methods; 2005 Oct; 129(1):47-55. PubMed ID: 15951030 [TBL] [Abstract][Full Text] [Related]
12. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts. Osman F; Dang T; Bodaghi S; Vidalakis G J Virol Methods; 2017 Jul; 245():40-52. PubMed ID: 28300606 [TBL] [Abstract][Full Text] [Related]
13. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees. Meena RP; Baranwal VK J Virol Methods; 2016 Sep; 235():58-64. PubMed ID: 27208471 [TBL] [Abstract][Full Text] [Related]
14. Development of a simple and rapid reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for sensitive detection of Citrus tristeza virus. Warghane A; Misra P; Bhose S; Biswas KK; Sharma AK; Reddy MK; Ghosh DK J Virol Methods; 2017 Dec; 250():6-10. PubMed ID: 28941614 [TBL] [Abstract][Full Text] [Related]
15. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan). Saponari M; Manjunath K; Yokomi RK J Virol Methods; 2008 Jan; 147(1):43-53. PubMed ID: 17888522 [TBL] [Abstract][Full Text] [Related]
16. Detection and quantitation of two cucurbit criniviruses in mixed infection by real-time RT-PCR. Abrahamian PE; Seblani R; Sobh H; Abou-Jawdah Y J Virol Methods; 2013 Nov; 193(2):320-6. PubMed ID: 23810855 [TBL] [Abstract][Full Text] [Related]
17. Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus. Ghosh DK; Kokane SB; Gowda S Sci Rep; 2020 Nov; 10(1):20593. PubMed ID: 33244066 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous detection and identification of four cherry viruses by two step multiplex RT-PCR with an internal control of plant nad5 mRNA. Noorani MS; Awasthi P; Sharma MP; Ram R; Zaidi AA; Hallan V J Virol Methods; 2013 Oct; 193(1):103-7. PubMed ID: 23707922 [TBL] [Abstract][Full Text] [Related]
19. Validation of an internally controlled multiplex real time RT-PCR for detection and typing of HEV genotype 3 and 4. Zhang X; Li A; Shuai J; Dai Y; Zhu Z; Wu S; He Y J Virol Methods; 2013 Nov; 193(2):432-8. PubMed ID: 23850697 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous detection of five notifiable viral diseases of cattle by single-tube multiplex real-time RT-PCR. Wernike K; Hoffmann B; Beer M J Virol Methods; 2015 Jun; 217():28-35. PubMed ID: 25746154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]