These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25907762)

  • 1. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review.
    He CS; Mu ZX; Yang HY; Wang YZ; Mu Y; Yu HQ
    Chemosphere; 2015 Dec; 140():12-7. PubMed ID: 25907762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of exoelectrogens and electron acceptors on the performance of microbial fuel cells].
    Li FX; Zhou QX; Li BK
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3070-4. PubMed ID: 20353079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of a recently emerged technology: Constructed wetland--Microbial fuel cells.
    Doherty L; Zhao Y; Zhao X; Hu Y; Hao X; Xu L; Liu R
    Water Res; 2015 Nov; 85():38-45. PubMed ID: 26295937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autotrophic nitrite removal in the cathode of microbial fuel cells.
    Puig S; Serra M; Vilar-Sanz A; Cabré M; Bañeras L; Colprim J; Balaguer MD
    Bioresour Technol; 2011 Mar; 102(6):4462-7. PubMed ID: 21262566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial fuel cells: novel biotechnology for energy generation.
    Rabaey K; Verstraete W
    Trends Biotechnol; 2005 Jun; 23(6):291-8. PubMed ID: 15922081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater.
    Lee YY; Kim TG; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1131-8. PubMed ID: 27428492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.
    Zhou M; Yang J; Wang H; Jin T; Xu D; Gu T
    Environ Technol; 2013; 34(13-16):1915-28. PubMed ID: 24350445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.
    Cai J; Zheng P; Mahmood Q
    Water Sci Technol; 2016; 73(4):947-54. PubMed ID: 26901739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel microbial fuel cell design to operate with different wastewaters simultaneously.
    Mathuriya AS
    J Environ Sci (China); 2016 Apr; 42():105-111. PubMed ID: 27090700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.
    Lin H; Wu X; Nelson C; Miller C; Zhu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(3):240-50. PubMed ID: 26654000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater.
    Stager JL; Zhang X; Logan BE
    Bioelectrochemistry; 2017 Dec; 118():154-160. PubMed ID: 28834783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brewery and liquid manure wastewaters as potential feedstocks for microbial fuel cells: a performance study.
    Angosto JM; Fernández-López JA; Godínez C
    Environ Technol; 2015; 36(1-4):68-78. PubMed ID: 25409585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.
    Oon YS; Ong SA; Ho LN; Wong YS; Oon YL; Lehl HK; Thung WE; Nordin N
    J Hazard Mater; 2017 Mar; 325():170-177. PubMed ID: 27931001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Nanomaterials in Microbial Fuel Cells: A Review.
    Abd-Elrahman NK; Al-Harbi N; Basfer NM; Al-Hadeethi Y; Umar A; Akbar S
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An insight into cathode options for microbial fuel cells.
    Lefebvre O; Al-Mamun A; Ooi WK; Tang Z; Chua DH; Ng HY
    Water Sci Technol; 2008; 57(12):2031-7. PubMed ID: 18587194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater.
    Rossi R; Hur AY; Page MA; Thomas AO; Butkiewicz JJ; Jones DW; Baek G; Saikaly PE; Cropek DM; Logan BE
    Water Res; 2022 May; 215():118208. PubMed ID: 35255425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaled-up multi-anode shared cathode microbial fuel cell for simultaneous treatment of multiple real wastewaters and power generation.
    Opoku PA; Jingyu H; Yi L; Guang L; Norgbey E
    Chemosphere; 2022 Jul; 299():134401. PubMed ID: 35339526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial fuel cell cathodes: from bottleneck to prime opportunity?
    Rabaey K; Keller J
    Water Sci Technol; 2008; 57(5):655-9. PubMed ID: 18401134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.