These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 25908388)
1. Genericity of confined chemical garden patterns with regard to changes in the reactants. Haudin F; Brasiliense V; Cartwright JH; Brau F; De Wit A Phys Chem Chem Phys; 2015 May; 17(19):12804-11. PubMed ID: 25908388 [TBL] [Abstract][Full Text] [Related]
2. Confined direct and reverse chemical gardens: Influence of local flow velocity on precipitation patterns. Ziemecka I; Brau F; De Wit A Chaos; 2020 Jan; 30(1):013140. PubMed ID: 32013509 [TBL] [Abstract][Full Text] [Related]
3. Chemical-garden formation, morphology, and composition. I. Effect of the nature of the cations. Cartwright JH; Escribano B; Sainz-Daz CI Langmuir; 2011 Apr; 27(7):3286-93. PubMed ID: 21391635 [TBL] [Abstract][Full Text] [Related]
4. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry. Ding Y; Gutiérrez-Ariza CM; Zheng M; Felgate A; Lawes A; Sainz-Díaz CI; Cartwright JHE; Cardoso SSS Phys Chem Chem Phys; 2022 Jul; 24(29):17841-17851. PubMed ID: 35851594 [TBL] [Abstract][Full Text] [Related]
5. Spiral precipitation patterns in confined chemical gardens. Haudin F; Cartwright JH; Brau F; De Wit A Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17363-7. PubMed ID: 25385581 [TBL] [Abstract][Full Text] [Related]
6. Archimedean Spirals Form at Low Flow Rates in Confined Chemical Gardens. Rocha LAM; Thorne L; Wong JJ; Cartwright JHE; Cardoso SSS Langmuir; 2022 May; 38(21):6700-6710. PubMed ID: 35593590 [TBL] [Abstract][Full Text] [Related]
7. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity. Cartwright JH; Escribano B; Sainz-Díaz CI; Stodieck LS Langmuir; 2011 Apr; 27(7):3294-300. PubMed ID: 21391639 [TBL] [Abstract][Full Text] [Related]
8. Oscillatory budding dynamics of a chemical garden within a co-flow of reactants. Spanoudaki D; Brau F; De Wit A Phys Chem Chem Phys; 2021 Jan; 23(2):1684-1693. PubMed ID: 33416815 [TBL] [Abstract][Full Text] [Related]
9. Flow-driven control of calcium carbonate precipitation patterns in a confined geometry. Schuszter G; Brau F; De Wit A Phys Chem Chem Phys; 2016 Sep; 18(36):25592-25600. PubMed ID: 27722633 [TBL] [Abstract][Full Text] [Related]
10. Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry. Balog E; Bittmann K; Schwarzenberger K; Eckert K; De Wit A; Schuszter G Phys Chem Chem Phys; 2019 Feb; 21(6):2910-2918. PubMed ID: 30675601 [TBL] [Abstract][Full Text] [Related]
11. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions. Batista BC; Morris AZ; Steinbock O Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2305172120. PubMed ID: 37399415 [TBL] [Abstract][Full Text] [Related]
12. Characterization of iron-phosphate-silicate chemical garden structures. Barge LM; Doloboff IJ; White LM; Stucky GD; Russell MJ; Kanik I Langmuir; 2012 Feb; 28(8):3714-21. PubMed ID: 22035594 [TBL] [Abstract][Full Text] [Related]
13. Comparison of flow-controlled calcium and barium carbonate precipitation patterns. Schuszter G; De Wit A J Chem Phys; 2016 Dec; 145(22):224201. PubMed ID: 27984890 [TBL] [Abstract][Full Text] [Related]
14. Pattern of a confined chemical garden controlled by injection speed. Wagatsuma S; Higashi T; Sumino Y; Achiwa A Phys Rev E; 2017 May; 95(5-1):052220. PubMed ID: 28618586 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and composition modification of precipitate tubes in a confined flow reactor. Bene K; Balog E; Schuszter G Phys Chem Chem Phys; 2023 Oct; 25(40):27293-27301. PubMed ID: 37791462 [TBL] [Abstract][Full Text] [Related]
17. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Gounder R; Iglesia E Acc Chem Res; 2012 Feb; 45(2):229-38. PubMed ID: 21870839 [TBL] [Abstract][Full Text] [Related]
20. The impact of reaction rate on the formation of flow-driven confined precipitate patterns. Balog E; Papp P; Tóth Á; Horváth D; Schuszter G Phys Chem Chem Phys; 2020 Jun; 22(24):13390-13397. PubMed ID: 32356553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]