These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25908412)
1. Hydrothermal upgrading of algae paste in a continuous flow reactor. Patel B; Hellgardt K Bioresour Technol; 2015 Sep; 191():460-8. PubMed ID: 25908412 [TBL] [Abstract][Full Text] [Related]
2. Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters. Prapaiwatcharapan K; Sunphorka S; Kuchonthara P; Kangvansaichol K; Hinchiranan N Bioresour Technol; 2015 Sep; 191():426-32. PubMed ID: 25913031 [TBL] [Abstract][Full Text] [Related]
3. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Vardon DR; Sharma BK; Scott J; Yu G; Wang Z; Schideman L; Zhang Y; Strathmann TJ Bioresour Technol; 2011 Sep; 102(17):8295-303. PubMed ID: 21741234 [TBL] [Abstract][Full Text] [Related]
4. Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Dec; 174():212-21. PubMed ID: 25463802 [TBL] [Abstract][Full Text] [Related]
5. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Faeth JL; Savage PE Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204 [TBL] [Abstract][Full Text] [Related]
6. Effect of acidic, neutral and alkaline conditions on product distribution and biocrude oil chemistry from hydrothermal liquefaction of microalgae. Zhang B; He Z; Chen H; Kandasamy S; Xu Z; Hu X; Guo H Bioresour Technol; 2018 Dec; 270():129-137. PubMed ID: 30216922 [TBL] [Abstract][Full Text] [Related]
7. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
8. Ni-Ru/CeO Xu D; Guo S; Liu L; Hua H; Guo Y; Wang S; Jing Z Biomed Res Int; 2018; 2018():8376127. PubMed ID: 29854797 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude. Lavanya M; Meenakshisundaram A; Renganathan S; Chinnasamy S; Lewis DM; Nallasivam J; Bhaskar S Bioresour Technol; 2016 Mar; 203():228-35. PubMed ID: 26735877 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Muppaneni T; Reddy HK; Selvaratnam T; Dandamudi KPR; Dungan B; Nirmalakhandan N; Schaub T; Omar Holguin F; Voorhies W; Lammers P; Deng S Bioresour Technol; 2017 Jan; 223():91-97. PubMed ID: 27788432 [TBL] [Abstract][Full Text] [Related]
11. Microalgae hydrothermal liquefaction and derived biocrude upgrading with modified SBA-15 catalysts. Li J; Fang X; Bian J; Guo Y; Li C Bioresour Technol; 2018 Oct; 266():541-547. PubMed ID: 30015249 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal Liquefaction of Loblolly Pine: Effects of Various Wastes on Produced Biocrude. Saba A; Lopez B; Lynam JG; Reza MT ACS Omega; 2018 Mar; 3(3):3051-3059. PubMed ID: 31458570 [TBL] [Abstract][Full Text] [Related]
13. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Oct; 170():20-29. PubMed ID: 25118149 [TBL] [Abstract][Full Text] [Related]
14. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds. Sheng L; Wang X; Yang X Bioresour Technol; 2018 Jan; 247():14-20. PubMed ID: 28946088 [TBL] [Abstract][Full Text] [Related]
15. Laboratory Conversion of Cultivated Oleaginous Organisms into Biocrude for Biofuel Applications. Blessing E; Jena U; Chinnasamy S Methods Mol Biol; 2019; 1995():183-193. PubMed ID: 31148130 [TBL] [Abstract][Full Text] [Related]
16. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal liquefaction of microalgae over transition metal supported TiO Wang W; Xu Y; Wang X; Zhang B; Tian W; Zhang J Bioresour Technol; 2018 Feb; 250():474-480. PubMed ID: 29197769 [TBL] [Abstract][Full Text] [Related]
19. Catalytic upgrading of duckweed biocrude in subcritical water. Zhang C; Duan P; Xu Y; Wang B; Wang F; Zhang L Bioresour Technol; 2014 Aug; 166():37-44. PubMed ID: 24880811 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Patel B; Guo M; Chong C; Sarudin SHM; Hellgardt K Sci Total Environ; 2016 Oct; 568():489-497. PubMed ID: 27318079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]