BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25908535)

  • 1. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.
    Wang B; Liu A; Abdulla WA; Wang D; Zhao XS
    Nanoscale; 2015 May; 7(19):8819-28. PubMed ID: 25908535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.
    Ha J; Park SK; Yu SH; Jin A; Jang B; Bong S; Kim I; Sung YE; Piao Y
    Nanoscale; 2013 Sep; 5(18):8647-55. PubMed ID: 23897269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Graphene Oxide Coating LiFePO
    Zhang Q; Zhou Y; Tong Y; Chi Y; Liu R; Dai C; Li Z; Cui Z; Liang Y; Tan Y
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose-assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes.
    Wu Y; Wen Z; Feng H; Li J
    Chemistry; 2013 Apr; 19(18):5631-6. PubMed ID: 23468054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.
    Ha SH; Lee YJ
    Chemistry; 2015 Jan; 21(5):2132-8. PubMed ID: 25430976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.
    Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage.
    Rui K; Wen Z; Lu Y; Shen C; Jin J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1819-26. PubMed ID: 26727406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Low-Temperature Carbonization Capping of LiFePO
    Guo F; Huang X; Li Y; Zhang S; He X; Liu J; Yu Z; Li F; Liu B
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Structural Regulation Platform for the Controlled Synthesis of LiFePO
    Zheng Z; Bei F; Zhou L; Xia W; Sun J; Qian H
    Langmuir; 2024 Jan; 40(4):2396-2404. PubMed ID: 38237152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability.
    Zhang Q; Huang SZ; Jin J; Liu J; Li Y; Wang HE; Chen LH; Wang BJ; Su BL
    Sci Rep; 2016 May; 6():25942. PubMed ID: 27181195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO
    Jiang X; Xin Y; He B; Zhang F; Tian H
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prominent enhancement of stability under high current density of LiFePO
    Kim J; Song S; Lee CS; Lee M; Bae J
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1958-1965. PubMed ID: 37517195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted hydrometallurgical extraction of Li
    Bonnisa Magdaline T; Vadivel Murugan A
    Dalton Trans; 2020 May; 49(19):6227-6241. PubMed ID: 32334428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green Synthesis of Porous Three-Dimensional Nitrogen-Doped Graphene Foam for Electrochemical Applications.
    Yu H; Ye D; Butburee T; Wang L; Dargusch M
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2505-10. PubMed ID: 26744920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4.
    Zhang K; Lee JT; Li P; Kang B; Kim JH; Yi GR; Park JH
    Nano Lett; 2015 Oct; 15(10):6756-63. PubMed ID: 26389552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of graphene embedded LiFePO₄ using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries.
    Kim W; Ryu W; Han D; Lim S; Eom J; Kwon H
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4731-6. PubMed ID: 24621267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.