These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25908822)

  • 21. Lattice simulations of cotranslational folding of single domain proteins.
    Wang P; Klimov DK
    Proteins; 2008 Feb; 70(3):925-37. PubMed ID: 17803235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translation and folding of single proteins in real time.
    Wruck F; Katranidis A; Nierhaus KH; Büldt G; Hegner M
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4399-E4407. PubMed ID: 28507157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro CFTR folding assays.
    Stidham RD; Wigley WC; Thomas PJ
    Methods Mol Med; 2002; 70():311-22. PubMed ID: 11917534
    [No Abstract]   [Full Text] [Related]  

  • 25. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG; Deber CM
    Biochemistry; 2013 Apr; 52(14):2419-26. PubMed ID: 23488803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribosome crystallography: catalysis and evolution of peptide-bond formation, nascent chain elongation and its co-translational folding.
    Bashan A; Yonath A
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):488-92. PubMed ID: 15916549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational evidence that fast translation speed can increase the probability of cotranslational protein folding.
    Wang E; Wang J; Chen C; Xiao Y
    Sci Rep; 2015 Oct; 5():15316. PubMed ID: 26486723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase.
    Frydman J; Erdjument-Bromage H; Tempst P; Hartl FU
    Nat Struct Biol; 1999 Jul; 6(7):697-705. PubMed ID: 10404229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the influence of codon translation rates on cotranslational protein folding.
    O'Brien EP; Ciryam P; Vendruscolo M; Dobson CM
    Acc Chem Res; 2014 May; 47(5):1536-44. PubMed ID: 24784899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical Origins of Codon Positions That Strongly Influence Cotranslational Folding: A Framework for Controlling Nascent-Protein Folding.
    Sharma AK; Bukau B; O'Brien EP
    J Am Chem Soc; 2016 Feb; 138(4):1180-95. PubMed ID: 26716464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach to recovery of function of mutant proteins by slowing down translation.
    Meriin AB; Mense M; Colbert JD; Liang F; Bihler H; Zaarur N; Rock KL; Sherman MY
    J Biol Chem; 2012 Oct; 287(41):34264-72. PubMed ID: 22902621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region.
    Lu NT; Pedersen PL
    Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chain length dependence of apomyoglobin folding: structural evolution from misfolded sheets to native helices.
    Chow CC; Chow C; Raghunathan V; Huppert TJ; Kimball EB; Cavagnero S
    Biochemistry; 2003 Jun; 42(23):7090-9. PubMed ID: 12795605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects.
    Baram D; Yonath A
    FEBS Lett; 2005 Feb; 579(4):948-54. PubMed ID: 15680980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis.
    Stein KC; Frydman J
    J Biol Chem; 2019 Feb; 294(6):2076-2084. PubMed ID: 30504455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates.
    O'Brien EP; Vendruscolo M; Dobson CM
    Nat Commun; 2014; 5():2988. PubMed ID: 24394622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of functional CFTR chloride channels.
    Riordan JR
    Annu Rev Physiol; 2005; 67():701-18. PubMed ID: 15709975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.