BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25908956)

  • 1. Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida).
    Boyle MJ; Yamaguchi E; Seaver EC
    Evodevo; 2014; 5():39. PubMed ID: 25908956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula.
    Perry KJ; Lyons DC; Truchado-Garcia M; Fischer AH; Helfrich LW; Johansson KB; Diamond JC; Grande C; Henry JQ
    Dev Dyn; 2015 Oct; 244(10):1215-48. PubMed ID: 26197970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I.
    Boyle MJ; Seaver EC
    Evol Dev; 2008; 10(1):89-105. PubMed ID: 18184360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula).
    Boyle MJ; Seaver EC
    Evodevo; 2010 Jul; 1(1):2. PubMed ID: 20849645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta.
    Meyer NP; Boyle MJ; Martindale MQ; Seaver EC
    Evodevo; 2010 Sep; 1(1):8. PubMed ID: 20849573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ins and outs of Spiralian gastrulation.
    Lyons DC; Henry JQ
    Int J Dev Biol; 2014; 58(6-8):413-28. PubMed ID: 25690959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation.
    Seaver EC; Yamaguchi E; Richards GS; Meyer NP
    Evodevo; 2012 Apr; 3():8. PubMed ID: 22510249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology.
    Steinmetz PRH; Aman A; Kraus JEM; Technau U
    Nat Ecol Evol; 2017 Oct; 1(10):1535-1542. PubMed ID: 29185520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gene regulatory network controlling the embryonic specification of endoderm.
    Peter IS; Davidson EH
    Nature; 2011 May; 474(7353):635-9. PubMed ID: 21623371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal regulation of nervous system development in the annelid
    Sur A; Magie CR; Seaver EC; Meyer NP
    Evodevo; 2017; 8():13. PubMed ID: 28775832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida.
    Sur A; Renfro A; Bergmann PJ; Meyer NP
    BMC Evol Biol; 2020 Jul; 20(1):84. PubMed ID: 32664907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems.
    Carrillo-Baltodano AM; Meyer NP
    Dev Biol; 2017 Nov; 431(2):134-144. PubMed ID: 28943340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
    Davidson EH; Rast JP; Oliveri P; Ransick A; Calestani C; Yuh CH; Minokawa T; Amore G; Hinman V; Arenas-Mena C; Otim O; Brown CT; Livi CB; Lee PY; Revilla R; Schilstra MJ; Clarke PJ; Rust AG; Pan Z; Arnone MI; Rowen L; Cameron RA; McClay DR; Hood L; Bolouri H
    Dev Biol; 2002 Jun; 246(1):162-90. PubMed ID: 12027441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular patterning during the development of
    Andrikou C; Passamaneck YJ; Lowe CJ; Martindale MQ; Hejnol A
    Evodevo; 2019; 10():33. PubMed ID: 31867094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic BMP-cWNT signaling in the cnidarian
    Wijesena N; Simmons DK; Martindale MQ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5608-E5615. PubMed ID: 28652368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans.
    Arenas-Mena C
    Int J Dev Biol; 2013; 57(1):73-83. PubMed ID: 23585355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.