These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25909384)

  • 21. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella).
    Ballester V; Granero F; Tabashnik BE; Malvar T; Ferré J
    Appl Environ Microbiol; 1999 Apr; 65(4):1413-9. PubMed ID: 10103230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A case of "pseudo science"? A study claiming effects of the Cry1Ab protein on larvae of the two-spotted ladybird is reminiscent of the case of the green lacewing.
    Rauschen S
    Transgenic Res; 2010 Feb; 19(1):13-6. PubMed ID: 19565349
    [No Abstract]   [Full Text] [Related]  

  • 23. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy.
    Valaitis AP
    J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Risk assessment of toxins derived from Bacillus thuringiensis-synergism, efficacy, and selectivity.
    Then C
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):791-7. PubMed ID: 19557450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74.
    Casique-Arroyo G; Bideshi D; Salcedo-Hernández R; Barboza-Corona JE
    Antonie Van Leeuwenhoek; 2007 Jul; 92(1):1-9. PubMed ID: 17136568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of Bacillus thuringiensis strains for Plutella xylostella (L.) (Lepidoptera: Plutellidae) susceptibility.
    Santos MS; Dias NP; Costa LL; De Bortoli CP; Souza EH; Ferreira Santos AC; De Bortoli SA; Polanczyk RA
    J Invertebr Pathol; 2019 Nov; 168():107255. PubMed ID: 31606356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway.
    Portugal L; Muñóz-Garay C; Martínez de Castro DL; Soberón M; Bravo A
    Insect Biochem Mol Biol; 2017 Jan; 80():21-31. PubMed ID: 27867074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella.
    Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ
    Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae.
    Ruiz de Escudero I; Estela A; Porcar M; Martínez C; Oguiza JA; Escriche B; Ferré J; Caballero P
    Appl Environ Microbiol; 2006 Jul; 72(7):4796-804. PubMed ID: 16820473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of Midgut Cadherin from Two Moths in Different
    Gao M; Dong S; Hu X; Zhang X; Liu Y; Zhong J; Lu L; Wang Y; Chen L; Liu X
    J Agric Food Chem; 2019 Dec; 67(48):13237-13246. PubMed ID: 31671945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of cry1Ab gene from a novel Bacillus thuringiensis strain SY49-1 active on pest insects.
    Azizoglu U; Ayvaz A; Yılmaz S; Karabörklü S; Temizgul R
    Braz J Microbiol; 2016; 47(3):597-602. PubMed ID: 27143037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness.
    Guo Z; Guo L; Qin J; Ye F; Sun D; Wu Q; Wang S; Crickmore N; Zhou X; Bravo A; Soberón M; Zhang Y
    Nat Commun; 2022 Oct; 13(1):6024. PubMed ID: 36224245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translocation of Bacillus thuringiensis in Phaseolus vulgaris tissues and vertical transmission in Arabidopsis thaliana.
    García-Suárez R; Verduzco-Rosas LA; Del Rincón-Castro MC; Délano-Frier JP; Ibarra JE
    J Appl Microbiol; 2017 Apr; 122(4):1092-1100. PubMed ID: 28129468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac.
    Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC
    Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm.
    Tabashnik BE; Wu K; Wu Y
    J Invertebr Pathol; 2012 Jul; 110(3):301-6. PubMed ID: 22537835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cadherin-like protein influences Bacillus thuringiensis Cry1Ab toxicity in the oriental armyworm, Mythimna separata.
    Wang L; Jiang X; Luo L; Stanley D; Sappington TW; Zhang L
    Environ Microbiol Rep; 2013 Jun; 5(3):438-43. PubMed ID: 23754724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cry1Ac Protoxin and Its Activated Toxin from
    Qi L; Qiu X; Yang S; Li R; Wu B; Cao X; He T; Ding X; Xia L; Sun Y
    J Agric Food Chem; 2020 May; 68(21):5816-5824. PubMed ID: 32379448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retrotransposon-mediated evolutionary rewiring of a pathogen response orchestrates a resistance phenotype in an insect host.
    Guo Z; Guo L; Bai Y; Kang S; Sun D; Qin J; Ye F; Wang S; Wu Q; Xie W; Yang X; Crickmore N; Zhou X; Zhang Y
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2300439120. PubMed ID: 36996102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo fluorescence observation of parasporal inclusion formation in Bacillus thuringiensis.
    Yang H; Rong R; Song F; Sun C; Wei J; Zhang J; Huang D
    Sci China Life Sci; 2010 Sep; 53(9):1106-11. PubMed ID: 21104371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.