BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 2590940)

  • 1. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit.
    Perisic O; Xiao H; Lis JT
    Cell; 1989 Dec; 59(5):797-806. PubMed ID: 2590940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the DNA-binding domain of Drosophila heat shock factor with its cognate DNA site: a thermodynamic analysis using analytical ultracentrifugation.
    Kim SJ; Tsukiyama T; Lewis MS; Wu C
    Protein Sci; 1994 Jul; 3(7):1040-51. PubMed ID: 7920249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
    Clos J; Westwood JT; Becker PB; Wilson S; Lambert K; Wu C
    Cell; 1990 Nov; 63(5):1085-97. PubMed ID: 2257625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit.
    Xiao H; Perisic O; Lis JT
    Cell; 1991 Feb; 64(3):585-93. PubMed ID: 1899357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of heat shock factor to and transcriptional activation of heat shock genes in Drosophila.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1995 Dec; 23(23):4799-804. PubMed ID: 8532521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions.
    Fernandes M; Xiao H; Lis JT
    Nucleic Acids Res; 1994 Jan; 22(2):167-73. PubMed ID: 8121800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity in DNA recognition by heat shock transcription factors (HSFs) from model organisms.
    Enoki Y; Sakurai H
    FEBS Lett; 2011 May; 585(9):1293-8. PubMed ID: 21510947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans.
    Schuetz TJ; Gallo GJ; Sheldon L; Tempst P; Kingston RE
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6911-5. PubMed ID: 1871106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.
    Wisniewski J; Orosz A; Allada R; Wu C
    Nucleic Acids Res; 1996 Jan; 24(2):367-74. PubMed ID: 8628664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular recognition of 5-base-pair DNA sequence motifs by human heat shock transcription factor.
    Cunniff NF; Wagner J; Morgan WD
    Mol Cell Biol; 1991 Jul; 11(7):3504-14. PubMed ID: 1904540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in DNA sequence recognition by the heat-shock factors of Drosophila melanogaster and the parasitic helminth Schistosoma mansoni.
    Levy-Holtzman R; Clos J; Schechter I
    Biochim Biophys Acta; 1995 Oct; 1264(1):134-40. PubMed ID: 7578247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter.
    Thomas GH; Elgin SC
    EMBO J; 1988 Jul; 7(7):2191-201. PubMed ID: 2901349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The unusual structure of heat shock locus 2-48B in Drosophila hydei.
    Peters FP; Lubsen NH; Walldorf U; Moormann RJ; Hovemann B
    Mol Gen Genet; 1984; 197(3):392-8. PubMed ID: 6597335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The architecture of the heat-inducible Drosophila hsp27 promoter in nuclei.
    Quivy JP; Becker PB
    J Mol Biol; 1996 Feb; 256(2):249-63. PubMed ID: 8594194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression.
    Sakurai H; Enoki Y
    FEBS J; 2010 Oct; 277(20):4140-9. PubMed ID: 20945530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization.
    Orosz A; Wisniewski J; Wu C
    Mol Cell Biol; 1996 Dec; 16(12):7018-30. PubMed ID: 8943357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of stress proteins in cultured myogenic cells. Molecular signals for the activation of heat shock transcription factor during ischemia.
    Benjamin IJ; Horie S; Greenberg ML; Alpern RJ; Williams RS
    J Clin Invest; 1992 May; 89(5):1685-9. PubMed ID: 1569208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.