These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 2590940)

  • 21. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature.
    Lee S; Carlson T; Christian N; Lea K; Kedzie J; Reilly JP; Bonner JJ
    Mol Biol Cell; 2000 May; 11(5):1753-64. PubMed ID: 10793149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional regulation of a yeast HSP70 gene by heat shock factor and an upstream repression site-binding factor.
    Park HO; Craig EA
    Genes Dev; 1991 Jul; 5(7):1299-308. PubMed ID: 2065978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibody-mediated activation of Drosophila heat shock factor in vitro.
    Zimarino V; Wilson S; Wu C
    Science; 1990 Aug; 249(4968):546-9. PubMed ID: 2200124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation.
    Sorger PK; Pelham HR
    Cell; 1988 Sep; 54(6):855-64. PubMed ID: 3044613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual regulation of the Drosophila hsp26 promoter in vitro.
    Sandaltzopoulos R; Mitchelmore C; Bonte E; Wall G; Becker PB
    Nucleic Acids Res; 1995 Jul; 23(13):2479-87. PubMed ID: 7630725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct repeats in HSF binding sites.
    Raibaud O
    Nature; 1990 Mar; 344(6263):204. PubMed ID: 2314458
    [No Abstract]   [Full Text] [Related]  

  • 28. Purification and properties of Drosophila heat shock activator protein.
    Wu C; Wilson S; Walker B; Dawid I; Paisley T; Zimarino V; Ueda H
    Science; 1987 Nov; 238(4831):1247-53. PubMed ID: 3685975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper.
    Rabindran SK; Haroun RI; Clos J; Wisniewski J; Wu C
    Science; 1993 Jan; 259(5092):230-4. PubMed ID: 8421783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different forms of the mRNA encoding the heat-shock transcription factor are expressed during the life cycle of the parasitic helminth Schistosoma mansoni.
    Lantner F; Ziv E; Ram D; Schechter I
    Eur J Biochem; 1998 Apr; 253(2):390-8. PubMed ID: 9654088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro activation of purified human heat shock factor by heat.
    Larson JS; Schuetz TJ; Kingston RE
    Biochemistry; 1995 Feb; 34(6):1902-11. PubMed ID: 7849050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat shock regulatory elements are present in telomeric repeats of Chironomus thummi.
    Martinez JL; Sanchez-Elsner T; Morcillo G; Diez JL
    Nucleic Acids Res; 2001 Nov; 29(22):4760-6. PubMed ID: 11713327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation in vitro of sequence-specific DNA binding by a human regulatory factor.
    Larson JS; Schuetz TJ; Kingston RE
    Nature; 1988 Sep; 335(6188):372-5. PubMed ID: 3419505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator.
    Zhao X; Shi H; Sevilimedu A; Liachko N; Nelson HC; Lis JT
    Nucleic Acids Res; 2006; 34(13):3755-61. PubMed ID: 16893958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats.
    Glaser RL; Thomas GH; Siegfried E; Elgin SC; Lis JT
    J Mol Biol; 1990 Feb; 211(4):751-61. PubMed ID: 2313697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural features are as important as sequence homologies in Drosophila heat shock gene upstream regions.
    Nussinov R; Lennon GG
    J Mol Evol; 1984; 20(2):106-10. PubMed ID: 6433028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Molecular structure and alternative splicing analysis of heat shock factors of
    Yu X; Hai-Yan L; Shu-Jie C; Ling-Yu S; Li-Yan O; Ping-Ying T; Dan X; Qi-Wei C; Sinan Z; Xiao-Hong Z
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(4):381-387. PubMed ID: 29376277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene.
    Parker CS; Topol J
    Cell; 1984 May; 37(1):273-83. PubMed ID: 6722872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.