These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25909971)

  • 1. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.
    Fernandez FR; Malerba P; White JA
    PLoS Comput Biol; 2015 Apr; 11(4):e1004188. PubMed ID: 25909971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity.
    Fernandez FR; Malerba P; Bressloff PC; White JA
    J Neurosci; 2013 Apr; 33(14):6027-40. PubMed ID: 23554484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex.
    Fernandez FR; White JA
    J Neurosci; 2008 Apr; 28(14):3790-803. PubMed ID: 18385337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons.
    Economo MN; Martínez JJ; White JA
    Hippocampus; 2014 Dec; 24(12):1493-505. PubMed ID: 25044927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro.
    Dickson CT; Mena AR; Alonso A
    Neuroscience; 1997 Dec; 81(4):937-50. PubMed ID: 9330357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability.
    Dudman JT; Nolan MF
    PLoS Comput Biol; 2009 Feb; 5(2):e1000290. PubMed ID: 19214199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-Dependent Membrane Properties Shape the Size But Not the Frequency Content of Spontaneous Voltage Fluctuations in Layer 2/3 Somatosensory Cortex.
    Fernandez FR; Noueihed J; White JA
    J Neurosci; 2019 Mar; 39(12):2221-2237. PubMed ID: 30655351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex.
    White JA; Klink R; Alonso A; Kay AR
    J Neurophysiol; 1998 Jul; 80(1):262-9. PubMed ID: 9658048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
    Shay CF; Ferrante M; Chapman GW; Hasselmo ME
    Neurobiol Learn Mem; 2016 Mar; 129():83-98. PubMed ID: 26385258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1997 Apr; 77(4):1813-28. PubMed ID: 9114238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2008 Sep; 28(38):9414-25. PubMed ID: 18799674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state.
    Fernandez FR; Broicher T; Truong A; White JA
    J Neurosci; 2011 Mar; 31(10):3880-93. PubMed ID: 21389243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons.
    Prescott SA; Ratté S; De Koninck Y; Sejnowski TJ
    J Neurosci; 2006 Sep; 26(36):9084-97. PubMed ID: 16957065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro.
    Midtgaard J
    J Physiol; 1992 Nov; 457():329-54. PubMed ID: 1338460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents.
    Rotstein HG
    J Comput Neurosci; 2015 Apr; 38(2):325-54. PubMed ID: 25586875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons.
    Dickson CT; Magistretti J; Shalinsky MH; Fransén E; Hasselmo ME; Alonso A
    J Neurophysiol; 2000 May; 83(5):2562-79. PubMed ID: 10805658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.