These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25910075)

  • 21. Kinetic analysis of a molecular model of the budding yeast cell cycle.
    Chen KC; Csikasz-Nagy A; Gyorffy B; Val J; Novak B; Tyson JJ
    Mol Biol Cell; 2000 Jan; 11(1):369-91. PubMed ID: 10637314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swe1p responds to cytoskeletal perturbation, not bud size, in S. cerevisiae.
    McNulty JJ; Lew DJ
    Curr Biol; 2005 Dec; 15(24):2190-8. PubMed ID: 16360682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental testing of a new integrated model of the budding yeast Start transition.
    Adames NR; Schuck PL; Chen KC; Murali TM; Tyson JJ; Peccoud J
    Mol Biol Cell; 2015 Nov; 26(22):3966-84. PubMed ID: 26310445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen.
    Wang J; Wang G; Khan MF
    PLoS One; 2015; 10(7):e0131457. PubMed ID: 26192324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast.
    Martinez JS; Jeong DE; Choi E; Billings BM; Hall MC
    Mol Cell Biol; 2006 Dec; 26(24):9162-76. PubMed ID: 17030612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic Evidence for Roles of Yeast Mitotic Cyclins at Single-Stranded Gaps Created by DNA Replication.
    Signon L
    G3 (Bethesda); 2018 Feb; 8(2):737-752. PubMed ID: 29279302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. G2 cyclins are required for the degradation of G1 cyclins in yeast.
    Blondel M; Mann C
    Nature; 1996 Nov; 384(6606):279-82. PubMed ID: 8918881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry.
    Bhaduri S; Valk E; Winters MJ; Gruessner B; Loog M; Pryciak PM
    Curr Biol; 2015 Feb; 25(3):316-325. PubMed ID: 25619768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clb3-centered regulations are recurrent across distinct parameter regions in minimal autonomous cell cycle oscillator designs.
    Mondeel TDGA; Ivanov O; Westerhoff HV; Liebermeister W; Barberis M
    NPJ Syst Biol Appl; 2020 Apr; 6(1):8. PubMed ID: 32245958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple inputs ensure yeast cell size homeostasis during cell cycle progression.
    Garmendia-Torres C; Tassy O; Matifas A; Molina N; Charvin G
    Elife; 2018 Jul; 7():. PubMed ID: 29972352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Saccharomyces cerevisiae MSA1 mRNA has a sequence for localization at the bud tip.
    Takeuchi-Andoh T; Hayano-Oshiro Y; Nishiyoshi E; Mutazono M; Hayashi S; Tani T
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1778-1785. PubMed ID: 28693383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mitotic cyclins Clb2p and Clb4p affect morphogenesis in Candida albicans.
    Bensen ES; Clemente-Blanco A; Finley KR; Correa-Bordes J; Berman J
    Mol Biol Cell; 2005 Jul; 16(7):3387-400. PubMed ID: 15888543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the START transition in the budding yeast cell cycle.
    Ravi J; Samart K; Zwolak J
    PLoS Comput Biol; 2024 Aug; 20(8):e1012048. PubMed ID: 39093881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rot1 plays an antagonistic role to Clb2 in actin cytoskeleton dynamics throughout the cell cycle.
    Juanes MA; Queralt E; Bañó MC; Igual JC
    J Cell Sci; 2007 Jul; 120(Pt 14):2390-401. PubMed ID: 17606994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for KEM1 at the START of the cell cycle in Saccharomyces cerevisiae.
    Pathak R; Bogomolnaya LM; Guo J; Polymenis M
    Curr Genet; 2005 Nov; 48(5):300-9. PubMed ID: 16240118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start.
    Schneider BL; Zhang J; Markwardt J; Tokiwa G; Volpe T; Honey S; Futcher B
    Mol Cell Biol; 2004 Dec; 24(24):10802-13. PubMed ID: 15572683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic exit from mitosis in budding yeast: model predictions and experimental observations.
    Ball DA; Ahn TH; Wang P; Chen KC; Cao Y; Tyson JJ; Peccoud J; Baumann WT
    Cell Cycle; 2011 Mar; 10(6):999-1009. PubMed ID: 21350333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
    Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ
    Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth.
    Ahn SH; Acurio A; Kron SJ
    Mol Biol Cell; 1999 Oct; 10(10):3301-16. PubMed ID: 10512868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of B-type cyclins in the smut fungus Ustilago maydis: roles in morphogenesis and pathogenicity.
    García-Muse T; Steinberg G; Perez-Martín J
    J Cell Sci; 2004 Jan; 117(Pt 3):487-506. PubMed ID: 14679309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.