These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25910075)

  • 41. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit.
    Wäsch R; Cross FR
    Nature; 2002 Aug; 418(6897):556-62. PubMed ID: 12152084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae.
    Laabs TL; Markwardt DD; Slattery MG; Newcomb LL; Stillman DJ; Heideman W
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10275-80. PubMed ID: 12937340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of molecular noise and size control on variability in the budding yeast cell cycle.
    Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR
    Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor.
    Barberis M
    FEBS J; 2012 Sep; 279(18):3386-410. PubMed ID: 22356687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Competition in the chaperone-client network subordinates cell-cycle entry to growth and stress.
    Moreno DF; Parisi E; Yahya G; Vaggi F; Csikász-Nagy A; Aldea M
    Life Sci Alliance; 2019 Apr; 2(2):. PubMed ID: 30988162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach.
    Schreiber G; Barberis M; Scolari S; Klaus C; Herrmann A; Klipp E
    FASEB J; 2012 Feb; 26(2):546-54. PubMed ID: 22002907
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell-cycle transitions: a common role for stoichiometric inhibitors.
    Hopkins M; Tyson JJ; Novák B
    Mol Biol Cell; 2017 Nov; 28(23):3437-3446. PubMed ID: 28931595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle.
    Chandler-Brown D; Schmoller KM; Winetraub Y; Skotheim JM
    Curr Biol; 2017 Sep; 27(18):2774-2783.e3. PubMed ID: 28889980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The G1/S repressor WHI5 is expressed at similar levels throughout the cell cycle.
    Tollis S
    BMC Res Notes; 2022 Jul; 15(1):248. PubMed ID: 35841111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start.
    Yahya G; Parisi E; Flores A; Gallego C; Aldea M
    Mol Cell; 2014 Jan; 53(1):115-26. PubMed ID: 24374311
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A size-invariant bud-duration timer enables robustness in yeast cell size control.
    Allard CAH; Decker F; Weiner OD; Toettcher JE; Graziano BR
    PLoS One; 2018; 13(12):e0209301. PubMed ID: 30576342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation.
    Ferrezuelo F; Colomina N; Palmisano A; Garí E; Gallego C; Csikász-Nagy A; Aldea M
    Nat Commun; 2012; 3():1012. PubMed ID: 22910358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.
    Kron SJ; Styles CA; Fink GR
    Mol Biol Cell; 1994 Sep; 5(9):1003-22. PubMed ID: 7841518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex.
    Grate D; Wilson C
    Bioorg Med Chem; 2001 Oct; 9(10):2565-70. PubMed ID: 11557344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitotic cyclin Clb4 is required for the intracellular adaptation to glucose starvation in Saccharomyces cerevisiae.
    Umekawa M; Shiraishi D; Fuwa M; Sawaguchi K; Mashima Y; Katayama T; Karita S
    FEBS Lett; 2020 Apr; 594(8):1329-1338. PubMed ID: 31853970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability.
    Messier V; Zenklusen D; Michnick SW
    Cell; 2013 May; 153(5):1080-93. PubMed ID: 23706744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteostasis collapse, a hallmark of aging, hinders the chaperone-Start network and arrests cells in G1.
    Moreno DF; Jenkins K; Morlot S; Charvin G; Csikasz-Nagy A; Aldea M
    Elife; 2019 Sep; 8():. PubMed ID: 31518229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Start and the restriction point.
    Johnson A; Skotheim JM
    Curr Opin Cell Biol; 2013 Dec; 25(6):717-23. PubMed ID: 23916770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dilution and titration of cell-cycle regulators may control cell size in budding yeast.
    Heldt FS; Lunstone R; Tyson JJ; Novák B
    PLoS Comput Biol; 2018 Oct; 14(10):e1006548. PubMed ID: 30356259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.