These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 25910154)

  • 1. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.
    Ikeda H; Suzuki MT; Arita R
    Phys Rev Lett; 2015 Apr; 114(14):147003. PubMed ID: 25910154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-Gap Superconductivity Robust against Disorder in Heavy-Fermion CeCu_{2}Si_{2}.
    Takenaka T; Mizukami Y; Wilcox JA; Konczykowski M; Seiro S; Geibel C; Tokiwa Y; Kasahara Y; Putzke C; Matsuda Y; Carrington A; Shibauchi T
    Phys Rev Lett; 2017 Aug; 119(7):077001. PubMed ID: 28949698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
    Das T; Zhu JX; Graf MJ
    Sci Rep; 2015 Feb; 5():8632. PubMed ID: 25721375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in Cr- and Mn-based superconductors: a key issues review.
    Chen RY; Wang NL
    Rep Prog Phys; 2019 Jan; 82(1):012503. PubMed ID: 30523906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu
    Yamashita T; Takenaka T; Tokiwa Y; Wilcox JA; Mizukami Y; Terazawa D; Kasahara Y; Kittaka S; Sakakibara T; Konczykowski M; Seiro S; Jeevan HS; Geibel C; Putzke C; Onishi T; Ikeda H; Carrington A; Shibauchi T; Matsuda Y
    Sci Adv; 2017 Jun; 3(6):e1601667. PubMed ID: 28691082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concealed d-wave pairs in the s± condensate of iron-based superconductors.
    Ong T; Coleman P; Schmalian J
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5486-91. PubMed ID: 27140626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of superconductivity in heavy-electron materials.
    Yang YF; Pines D
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18178-82. PubMed ID: 25489102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconventional superconductivity from local spin fluctuations in the Kondo lattice.
    Bodensiek O; Žitko R; Vojta M; Jarrell M; Pruschke T
    Phys Rev Lett; 2013 Apr; 110(14):146406. PubMed ID: 25167017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials.
    Sachdev S; Metlitski MA; Punk M
    J Phys Condens Matter; 2012 Jul; 24(29):294205. PubMed ID: 22773369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap Symmetry of the Heavy Fermion Superconductor CeCu_{2}Si_{2} at Ambient Pressure.
    Li Y; Liu M; Fu Z; Chen X; Yang F; Yang YF
    Phys Rev Lett; 2018 May; 120(21):217001. PubMed ID: 29883182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.
    Weng ZF; Smidman M; Jiao L; Lu X; Yuan HQ
    Rep Prog Phys; 2016 Sep; 79(9):094503. PubMed ID: 27533524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral superconductivity in heavy-fermion metal UTe
    Jiao L; Howard S; Ran S; Wang Z; Rodriguez JO; Sigrist M; Wang Z; Butch NP; Madhavan V
    Nature; 2020 Mar; 579(7800):523-527. PubMed ID: 32214254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-induced quantum fluctuations in the heavy fermion superconductor CeCu(2)Ge(2).
    Singh DK; Thamizhavel A; Lynn JW; Dhar S; Rodriguez-Rivera J; Herman T
    Sci Rep; 2011; 1():117. PubMed ID: 22355634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematicity as a probe of superconducting pairing in iron-based superconductors.
    Fernandes RM; Millis AJ
    Phys Rev Lett; 2013 Sep; 111(12):127001. PubMed ID: 24093291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional s-wave superconductivity in Fe(Se,Te).
    Hanaguri T; Niitaka S; Kuroki K; Takagi H
    Science; 2010 Apr; 328(5977):474-6. PubMed ID: 20413495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of Nodal Superconductivity in Monolayer 1H-TaS
    Vaňo V; Ganguli SC; Amini M; Yan L; Khosravian M; Chen G; Kezilebieke S; Lado JL; Liljeroth P
    Adv Mater; 2023 Nov; 35(45):e2305409. PubMed ID: 37592888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional superconductivity in Ba(0.6)K(0.4)Fe2As2 from inelastic neutron scattering.
    Christianson AD; Goremychkin EA; Osborn R; Rosenkranz S; Lumsden MD; Malliakas CD; Todorov IS; Claus H; Chung DY; Kanatzidis MG; Bewley RI; Guidi T
    Nature; 2008 Dec; 456(7224):930-2. PubMed ID: 19092931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconductivity at the border of electron localization and itinerancy.
    Yu R; Goswami P; Si Q; Nikolic P; Zhu JX
    Nat Commun; 2013; 4():2783. PubMed ID: 24231858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Monte Carlo study of a dominant s-wave pairing symmetry in iron-based superconductors.
    Ma T; Lin HQ; Hu J
    Phys Rev Lett; 2013 Mar; 110(10):107002. PubMed ID: 23521282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.