These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25910181)

  • 1. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.
    Gindt YM; Messyasz A; Jumbo PI
    Biochemistry; 2015 May; 54(18):2802-5. PubMed ID: 25910181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and thermodynamic comparisons of Escherichia coli DNA photolyase and Vibrio cholerae cryptochrome 1.
    Sokolowsky K; Newton M; Lucero C; Wertheim B; Freedman J; Cortazar F; Czochor J; Schelvis JP; Gindt YM
    J Phys Chem B; 2010 May; 114(20):7121-30. PubMed ID: 20438097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of adenine in thymine-dimer repair by reduced flavin-adenine dinucleotide.
    Li G; Sichula V; Glusac KD
    J Phys Chem B; 2008 Aug; 112(34):10758-64. PubMed ID: 18681479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectroscopic investigation of the light-harvesting chromophore in escherichia coli photolyase and Vibrio cholerae cryptochrome-1.
    Sokolova O; Cecala C; Gopal A; Cortazar F; McDowell-Buchanan C; Sancar A; Gindt YM; Schelvis JP
    Biochemistry; 2007 Mar; 46(12):3673-81. PubMed ID: 17316023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Spectroscopic and Biophysical-Chemical Studies of the Complex of Cyclobutane Pyrimidine Dimer Photolyase and Cryptochrome DASH with Substrate DNA.
    Schelvis JP; Gindt YM
    Photochem Photobiol; 2017 Jan; 93(1):26-36. PubMed ID: 27891613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate binding modulates the reduction potential of DNA photolyase.
    Gindt YM; Schelvis JP; Thoren KL; Huang TH
    J Am Chem Soc; 2005 Aug; 127(30):10472-3. PubMed ID: 16045318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Characterization of a New Class of (6-4) Photolyase from
    Dikbas UM; Tardu M; Canturk A; Gul S; Ozcelik G; Baris I; Ozturk N; Kavakli IH
    Biochemistry; 2019 Oct; 58(43):4352-4360. PubMed ID: 31578858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.
    Hendrischk AK; Frühwirth SW; Moldt J; Pokorny R; Metz S; Kaiser G; Jäger A; Batschauer A; Klug G
    Mol Microbiol; 2009 Nov; 74(4):990-1003. PubMed ID: 19878455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the pH-dependence of the oxidation of FAD in VcCRY-1, a member of the cryptochrome-DASH family.
    Gindt YM; Connolly G; Vonder Haar AL; Kikhwa M; Schelvis JPM
    Photochem Photobiol Sci; 2021 Jun; 20(6):831-841. PubMed ID: 34091863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding kinetics of recognition loop peptides from a photolyase and cryptochrome-DASH.
    Brolich MA; Wang L; O'Neill MA
    Biochem Biophys Res Commun; 2010 Jan; 391(1):874-8. PubMed ID: 19945437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast dynamics of resonance energy transfer in cryptochrome.
    Saxena C; Wang H; Kavakli IH; Sancar A; Zhong D
    J Am Chem Soc; 2005 Jun; 127(22):7984-5. PubMed ID: 15926801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution.
    Tagua VG; Pausch M; Eckel M; Gutiérrez G; Miralles-Durán A; Sanz C; Eslava AP; Pokorny R; Corrochano LM; Batschauer A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15130-5. PubMed ID: 26578805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin adenine dinucleotide chromophore charge controls the conformation of cyclobutane pyrimidine dimer photolyase α-helices.
    Wijaya IM; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kennis JT; Mathes T; Kandori H
    Biochemistry; 2014 Sep; 53(37):5864-75. PubMed ID: 25152314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Characterization of the DASH-Type Cryptochrome CryD From Fusarium fujikuroi.
    Castrillo M; Bernhardt A; Ávalos J; Batschauer A; Pokorny R
    Photochem Photobiol; 2015 Nov; 91(6):1356-67. PubMed ID: 26215424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of full-length Drosophila cryptochrome.
    Zoltowski BD; Vaidya AT; Top D; Widom J; Young MW; Crane BR
    Nature; 2011 Nov; 480(7377):396-9. PubMed ID: 22080955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cryptochromes: blue light photoreceptors in plants and animals.
    Chaves I; Pokorny R; Byrdin M; Hoang N; Ritz T; Brettel K; Essen LO; van der Horst GT; Batschauer A; Ahmad M
    Annu Rev Plant Biol; 2011; 62():335-64. PubMed ID: 21526969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of ultraviolet-light-induced DNA damage in vibrio cholerae.
    Das G; Sil K; Das J
    Biochim Biophys Acta; 1981 Oct; 655(3):413-20. PubMed ID: 7284396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.