BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 25910208)

  • 1. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution.
    Mayer A; di Iulio J; Maleri S; Eser U; Vierstra J; Reynolds A; Sandstrom R; Stamatoyannopoulos JA; Churchman LS
    Cell; 2015 Apr; 161(3):541-554. PubMed ID: 25910208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing.
    Mayer A; Churchman LS
    Nat Protoc; 2016 Apr; 11(4):813-33. PubMed ID: 27010758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
    Nojima T; Gomes T; Grosso ARF; Kimura H; Dye MJ; Dhir S; Carmo-Fonseca M; Proudfoot NJ
    Cell; 2015 Apr; 161(3):526-540. PubMed ID: 25910207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Illuminating Enhancer Transcription at Nucleotide Resolution with Native Elongating Transcript Sequencing (NET-Seq).
    Jasnovidova O; Arnold M; Mayer A
    Methods Mol Biol; 2021; 2351():41-65. PubMed ID: 34382183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NET-prism enables RNA polymerase-dedicated transcriptional interrogation at nucleotide resolution.
    Mylonas C; Tessarz P
    RNA Biol; 2019 Sep; 16(9):1156-1165. PubMed ID: 31156037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved DNA sequence features underlie pervasive RNA polymerase pausing.
    Gajos M; Jasnovidova O; van Bömmel A; Freier S; Vingron M; Mayer A
    Nucleic Acids Res; 2021 May; 49(8):4402-4420. PubMed ID: 33788942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation.
    Kadener S; Fededa JP; Rosbash M; Kornblihtt AR
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8185-90. PubMed ID: 12060763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning-based framework for modeling transcription elongation.
    Feng P; Xiao A; Fang M; Wan F; Li S; Lang P; Zhao D; Zeng J
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat.
    Scheidegger A; Dunn CJ; Samarakkody A; Koney NK; Perley D; Saha RN; Nechaev S
    BMC Genomics; 2019 Jun; 20(1):477. PubMed ID: 31185909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Mammalian Native Elongating Transcript sequencing (mNET-seq) high-throughput data.
    Prudêncio P; Rebelo K; Grosso AR; Martinho RG; Carmo-Fonseca M
    Methods; 2020 Jun; 178():89-95. PubMed ID: 31493517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the nuclear walk-on methodology to determine sites of RNA polymerase II initiation and pausing and quantify nascent RNAs in cells.
    Ball CB; Nilson KA; Price DH
    Methods; 2019 Apr; 159-160():165-176. PubMed ID: 30743000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription elongation is finely tuned by dozens of regulatory factors.
    Couvillion M; Harlen KM; Lachance KC; Trotta KL; Smith E; Brion C; Smalec BM; Churchman LS
    Elife; 2022 May; 11():. PubMed ID: 35575476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis.
    Zhu J; Liu M; Liu X; Dong Z
    Nat Plants; 2018 Dec; 4(12):1112-1123. PubMed ID: 30374093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide.
    Nojima T; Gomes T; Carmo-Fonseca M; Proudfoot NJ
    Nat Protoc; 2016 Mar; 11(3):413-28. PubMed ID: 26844429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons.
    Jonkers I; Kwak H; Lis JT
    Elife; 2014 Apr; 3():e02407. PubMed ID: 24843027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers.
    Tome JM; Tippens ND; Lis JT
    Nat Genet; 2018 Nov; 50(11):1533-1541. PubMed ID: 30349116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition.
    Samarakkody A; Abbas A; Scheidegger A; Warns J; Nnoli O; Jokinen B; Zarns K; Kubat B; Dhasarathy A; Nechaev S
    Nucleic Acids Res; 2015 Apr; 43(8):3938-49. PubMed ID: 25820424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.
    Anamika K; Gyenis À; Poidevin L; Poch O; Tora L
    PLoS One; 2012; 7(6):e38769. PubMed ID: 22701709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide.
    Chen F; Gao X; Shilatifard A
    Genes Dev; 2015 Jan; 29(1):39-47. PubMed ID: 25561494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I.
    Scull CE; Clarke AM; Lucius AL; Schneider DA
    J Biol Chem; 2020 Jan; 295(5):1288-1299. PubMed ID: 31843971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.