These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25910257)

  • 1. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.
    Ak R; Fink O; Zio E
    IEEE Trans Neural Netw Learn Syst; 2016 Aug; 27(8):1734-47. PubMed ID: 25910257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
    Ranganayaki V; Deepa SN
    ScientificWorldJournal; 2016; 2016():9293529. PubMed ID: 27034973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Interval-Valued Neural Network Approach for Uncertainty Quantification in Short-Term Wind Speed Prediction.
    Ak R; Vitelli V; Zio E
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2787-800. PubMed ID: 25730829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.
    Quan H; Srinivasan D; Khosravi A
    IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2123-35. PubMed ID: 25532191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential.
    Amato F; Guignard F; Walch A; Mohajeri N; Scartezzini JL; Kanevski M
    Stoch Environ Res Risk Assess; 2022; 36(8):2049-2069. PubMed ID: 36101650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing solar power efficiency in smart grids using hybrid machine learning models for accurate energy generation prediction.
    Bhutta MS; Li Y; Abubakar M; Almasoudi FM; Alatawi KSS; Altimania MR; Al-Barashi M
    Sci Rep; 2024 Jul; 14(1):17101. PubMed ID: 39048605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term wind speed prediction based on improved Hilbert-Huang transform method coupled with NAR dynamic neural network model.
    Chen J; Guo Z; Zhang L; Zhang S
    Sci Rep; 2024 Jan; 14(1):617. PubMed ID: 38182873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term load and wind power forecasting using neural network-based prediction intervals.
    Quan H; Srinivasan D; Khosravi A
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):303-15. PubMed ID: 24807030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-task learning for the prediction of wind power ramp events with deep neural networks.
    Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C
    Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Data Size Variability in Wind Speed Prediction Using AI Algorithms.
    Ehsan MA; Shahirinia A; Zhang N; Oladunni T
    Cybern Syst; 2021; 52(1):105-126. PubMed ID: 38500540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel hybrid wind speed interval prediction model based on mode decomposition and gated recursive neural network.
    Xu H; Chang Y; Zhao Y; Wang F
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87097-87113. PubMed ID: 35804229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization scheme of wind energy prediction based on artificial intelligence.
    Zhang Y; Li R; Zhang J
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved chimpanzee algorithm based on CEEMDAN combination to optimize ELM short-term wind speed prediction.
    Sun W; Wang X
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):35115-35126. PubMed ID: 36525186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Automated Model Selection for Wind Speed and Solar Irradiance Forecasting.
    Blazakis K; Schetakis N; Bonfini P; Stavrakakis K; Karapidakis E; Katsigiannis Y
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An innovative forecasting model to predict wind energy.
    Zhang Y; Wang S
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74602-74618. PubMed ID: 35639315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term wind speed prediction using hybrid machine learning techniques.
    Gupta D; Natarajan N; Berlin M
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50909-50927. PubMed ID: 34251573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term wind speed prediction based on FEEMD-PE-SSA-BP.
    Zhu T; Wang W; Yu M
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79288-79305. PubMed ID: 35710968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance enhancement of short-term wind speed forecasting model using Realtime data.
    Ashraf M; Raza B; Arshad M; Khan BM; Zaidi SSH
    PLoS One; 2024; 19(5):e0302664. PubMed ID: 38820359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demand for flexibility improvement of thermal power units and accommodation of wind power under the situation of high-proportion renewable integration-taking North Hebei as an example.
    Luo G; Zhang X; Liu S; Dan E; Guo Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7033-7047. PubMed ID: 30644051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.