These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25910257)

  • 21. Research on renewable energy prediction technology: empirical analysis for Argentina and China.
    Li G; Wang J; Qi Z; Wang T; Ren Y; Zhang Y; Li G
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21225-21237. PubMed ID: 36269484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LSTM input timestep optimization using simulated annealing for wind power predictions.
    Muneeb M
    PLoS One; 2022; 17(10):e0275649. PubMed ID: 36206213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hybrid prediction model for forecasting wind energy resources.
    Zhang Y; Pan G
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting.
    Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction.
    Wang R; Li C; Fu W; Tang G
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3814-3827. PubMed ID: 31725392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long, short, and medium terms wind speed prediction model based on LSTM optimized by improved moth flame optimization algorithm.
    Li R; Wang J; Li J; Kou M
    Environ Sci Pollut Res Int; 2024 May; 31(25):37256-37282. PubMed ID: 38771541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessments of wind-energy potential in selected sites from three geopolitical zones in Nigeria: implications for renewable/sustainable rural electrification.
    Okeniyi JO; Ohunakin OS; Okeniyi ET
    ScientificWorldJournal; 2015; 2015():581679. PubMed ID: 25879063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel compound wind speed forecasting model based on the back propagation neural network optimized by bat algorithm.
    Cui Y; Huang C; Cui Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7353-7365. PubMed ID: 31884551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research of a combination system based on fuzzy sets and multi-objective marine predator algorithm for point and interval prediction of wind speed.
    Qian Y; Wang J; Zhang H; Zhang L
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):35781-35807. PubMed ID: 36536200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renewable energy sources integration via machine learning modelling: A systematic literature review.
    Alazemi T; Darwish M; Radi M
    Heliyon; 2024 Feb; 10(4):e26088. PubMed ID: 38404865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wind Speed Prediction Based on Error Compensation.
    Jiao X; Zhang D; Wang X; Tian Y; Liu W; Xin L
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms.
    Ibrahim M; Alsheikh A; Al-Hindawi Q; Al-Dahidi S; ElMoaqet H
    Comput Intell Neurosci; 2020; 2020():8439719. PubMed ID: 32377179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-Term Solar Irradiance Prediction Based on Adaptive Extreme Learning Machine and Weather Data.
    Alzahrani A
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids.
    Quan H; Khosravi A; Yang D; Srinivasan D
    IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4582-4599. PubMed ID: 31870999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intelligent based hybrid renewable energy resources forecasting and real time power demand management system for resilient energy systems.
    Amir M; Zaheeruddin ; Haque A
    Sci Prog; 2022; 105(4):368504221132144. PubMed ID: 36263519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.
    Men Z; Yee E; Lien FS; Yang Z; Liu Y
    Int Sch Res Notices; 2014; 2014():972580. PubMed ID: 27382627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.
    Ren Y; Suganthan PN; Srikanth N
    IEEE Trans Neural Netw Learn Syst; 2016 Aug; 27(8):1793-8. PubMed ID: 25222957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turbulent character of wind energy.
    Milan P; Wächter M; Peinke J
    Phys Rev Lett; 2013 Mar; 110(13):138701. PubMed ID: 23581387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.
    Mureddu M; Caldarelli G; Chessa A; Scala A; Damiano A
    PLoS One; 2015; 10(9):e0135312. PubMed ID: 26335705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneities in electricity grids strongly enhance non-Gaussian features of frequency fluctuations under stochastic power input.
    Wolff MF; Schmietendorf K; Lind PG; Kamps O; Peinke J; Maass P
    Chaos; 2019 Oct; 29(10):103149. PubMed ID: 31675815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.