These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102. Effect of imidacloprid exposure on life history traits in the agricultural generalist predator Paederus beetle: Lack of fitness cost but strong hormetic effect and skewed sex ratio. Feng WB; Bong LJ; Dai SM; Neoh KB Ecotoxicol Environ Saf; 2019 Jun; 174():390-400. PubMed ID: 30849660 [TBL] [Abstract][Full Text] [Related]
103. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations. Christen V; Krebs J; Bünter I; Fent K J Hazard Mater; 2019 Oct; 378():120736. PubMed ID: 31202068 [TBL] [Abstract][Full Text] [Related]
104. Combined effects of temperature and avermectins on life history and stress response of the western flower thrips, Frankliniella occidentalis. Li HB; Zheng YT; Sun DD; Wang JJ; Du YZ Pestic Biochem Physiol; 2014 Jan; 108():42-8. PubMed ID: 24485314 [TBL] [Abstract][Full Text] [Related]
105. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) Via the Host Plant Nutrients to Enhance Its Transmission and Spread. Shalileh S; Ogada PA; Moualeu DP; Poehling HM Environ Entomol; 2016 Oct; 45(5):1235-1242. PubMed ID: 27566527 [TBL] [Abstract][Full Text] [Related]
106. Toxicity and Sublethal Effects of Cantharidin on Musca domestica (Diptera: Muscidae). Yasoob H; Ali Khan HA; Zhang Y J Econ Entomol; 2017 Dec; 110(6):2539-2544. PubMed ID: 29029163 [TBL] [Abstract][Full Text] [Related]
107. Contribution of contact toxicity and wheat condition to mortality of stored-product insects exposed to spinosad. Toews MD; Subramanyam B Pest Manag Sci; 2003 May; 59(5):538-44. PubMed ID: 12741521 [TBL] [Abstract][Full Text] [Related]
108. Spinosad resistance in female Musca domestica L. from a field-derived population. Markussen MD; Kristensen M Pest Manag Sci; 2012 Jan; 68(1):75-82. PubMed ID: 21681919 [TBL] [Abstract][Full Text] [Related]
109. Spinosad-mediated effects in the post-embryonic development of Partamona helleri (Hymenoptera: Apidae: Meliponini). Araujo RDS; Bernardes RC; Fernandes KM; Lima MAP; Martins GF; Tavares MG Environ Pollut; 2019 Oct; 253():11-18. PubMed ID: 31302396 [TBL] [Abstract][Full Text] [Related]
110. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Qu Y; Xiao D; Li J; Chen Z; Biondi A; Desneux N; Gao X; Song D Ecotoxicology; 2015 Apr; 24(3):479-87. PubMed ID: 25492586 [TBL] [Abstract][Full Text] [Related]
111. Larvicidal activity of spinosad and its impact on oviposition preferences of the West Nile vector Culex pipiens biotype molestus - A comparison with a chitin synthesis inhibitor. Michaelakis A; Papachristos DP; Rumbos CI; Benelli G; Athanassiou CG Parasitol Int; 2020 Feb; 74():101917. PubMed ID: 31004804 [TBL] [Abstract][Full Text] [Related]
112. Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance in Bactrocera dorsalis. Hsu JC; Feng HT; Wu WJ; Geib SM; Mao CH; Vontas J Insect Biochem Mol Biol; 2012 Oct; 42(10):806-15. PubMed ID: 22898623 [TBL] [Abstract][Full Text] [Related]
113. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). Sayyed AH; Saeed S; Noor-Ul-Ane M; Crickmore N J Econ Entomol; 2008 Oct; 101(5):1658-66. PubMed ID: 18950049 [TBL] [Abstract][Full Text] [Related]
114. Temperature-related fitness costs of resistance to spinosad in the diamondback moth, Plutella xylostella (Lepidoptera: Plutelidae). Li ZM; Liu SS; Liu YQ; Ye GY Bull Entomol Res; 2007 Dec; 97(6):627-35. PubMed ID: 17997877 [TBL] [Abstract][Full Text] [Related]
115. Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. Zhao JZ; Li YX; Collins HL; Gusukuma-Minuto L; Mau RF; Thompson GD; Shelto AM J Econ Entomol; 2002 Apr; 95(2):430-6. PubMed ID: 12020024 [TBL] [Abstract][Full Text] [Related]
116. Spinosad, a new tool for insect control in vegetables cultivated in greenhouses. Schoonejans T; Van der Staaij M Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):375-86. PubMed ID: 12425058 [TBL] [Abstract][Full Text] [Related]
117. Sublethal and transgenerational effects of synthetic insecticides on the biological parameters and functional response of Afza R; Afzal A; Riaz MA; Majeed MZ; Idrees A; Qadir ZA; Afzal M; Hassan B; Li J Front Physiol; 2023; 14():1088712. PubMed ID: 36726846 [TBL] [Abstract][Full Text] [Related]
118. The Wiggle Index: An Open Source Bioassay to Assess Sub-Lethal Insecticide Response in Drosophila melanogaster. Denecke S; Nowell CJ; Fournier-Level A; Perry T; Batterham P PLoS One; 2015; 10(12):e0145051. PubMed ID: 26684454 [TBL] [Abstract][Full Text] [Related]
119. Sublethal effects of chlorfenapyr on Plutella xylostella (Lepidoptera: Plutellidae). Jia B; Zhang J; Hong S; Chang X; Li X Pest Manag Sci; 2023 Jan; 79(1):88-96. PubMed ID: 36087295 [TBL] [Abstract][Full Text] [Related]
120. The effects of spinosad on antioxidant system and cognitive performance of mice. Acar A; Akkoc H; Erdinc M Arch Physiol Biochem; 2021 Apr; 127(2):148-152. PubMed ID: 31172820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]