BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25910647)

  • 1. Human urinary renalase lacks the N-terminal signal peptide crucial for accommodation of its FAD cofactor.
    Fedchenko VI; Buneeva OA; Kopylov AT; Veselovsky AV; Zgoda VG; Medvedev AE
    Int J Biol Macromol; 2015; 78():347-53. PubMed ID: 25910647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase].
    Severina IS; Fedchenko VI; Veselovsky AV; Medvedev AE
    Biomed Khim; 2015; 61(6):667-79. PubMed ID: 26716738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renalase Secreted by Human Kidney HEK293T Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action.
    Fedchenko V; Kopylov A; Kozlova N; Buneeva O; Kaloshin A; Zgoda V; Medvedev A
    Kidney Blood Press Res; 2016; 41(5):593-603. PubMed ID: 27577995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation.
    Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A
    J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of human renalase1 in Escherichia coli and its purification as a FAD-containing holoprotein.
    Pandini V; Ciriello F; Tedeschi G; Rossoni G; Zanetti G; Aliverti A
    Protein Expr Purif; 2010 Aug; 72(2):244-53. PubMed ID: 20302943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enzyme: Renalase.
    Moran GR; Hoag MR
    Arch Biochem Biophys; 2017 Oct; 632():66-76. PubMed ID: 28558965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems.
    Medvedev AE; Veselovsky AV; Fedchenko VI
    Biochemistry (Mosc); 2010 Aug; 75(8):951-8. PubMed ID: 21073414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.
    Leung KK; Litchfield DW; Shilton BH
    Anal Biochem; 2012 Jan; 420(1):84-9. PubMed ID: 21971443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B.
    Rebrin I; Geha RM; Chen K; Shih JC
    J Biol Chem; 2001 Aug; 276(31):29499-506. PubMed ID: 11371556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat monoamine oxidase B expressed in Escherichia coli has a covalently-bound FAD.
    Hirashiki I; Ogata F; Ito A
    Biochem Mol Biol Int; 1995 Sep; 37(1):39-44. PubMed ID: 8653086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for quantitative determination of renalase based on mass spectrometric determination of a proteotypic peptide labelled with stable isotopes.
    Kopylov AT; Fedchenko VI; Buneeva OA; Pyatakova NV; Zgoda VG; Medvedev AE
    Rapid Commun Mass Spectrom; 2018 Aug; 32(15):1263-1270. PubMed ID: 29777551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-level expression of human liver monoamine oxidase B in Pichia pastoris.
    Newton-Vinson P; Hubalek F; Edmondson DE
    Protein Expr Purif; 2000 Nov; 20(2):334-45. PubMed ID: 11049757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW; Lewis DA; Zhou BP; Abell CW
    Arch Biochem Biophys; 1995 Jan; 316(1):385-91. PubMed ID: 7840641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypertension and kidney disease: is renalase a new player or an innocent bystander?
    Malyszko J; Malyszko JS; Mikhailidis DP; Rysz J; Zorawski M; Banach M
    J Hypertens; 2012 Mar; 30(3):457-62. PubMed ID: 22227817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.