These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Elagib KE; Racke FK; Mogass M; Khetawat R; Delehanty LL; Goldfarb AN Blood; 2003 Jun; 101(11):4333-41. PubMed ID: 12576332 [TBL] [Abstract][Full Text] [Related]
3. Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors. Draper JE; Sroczynska P; Leong HS; Fadlullah MZH; Miller C; Kouskoff V; Lacaud G Blood; 2017 Jul; 130(3):271-284. PubMed ID: 28490570 [TBL] [Abstract][Full Text] [Related]
4. Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation. Willcockson MA; Taylor SJ; Ghosh S; Healton SE; Wheat JC; Wilson TJ; Steidl U; Skoultchi AI Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17841-17847. PubMed ID: 31431533 [TBL] [Abstract][Full Text] [Related]
5. MEIS1 regulates early erythroid and megakaryocytic cell fate. Zeddies S; Jansen SB; di Summa F; Geerts D; Zwaginga JJ; van der Schoot CE; von Lindern M; Thijssen-Timmer DC Haematologica; 2014 Oct; 99(10):1555-64. PubMed ID: 25107888 [TBL] [Abstract][Full Text] [Related]
6. SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells. Toscano MG; Navarro-Montero O; Ayllon V; Ramos-Mejia V; Guerrero-Carreno X; Bueno C; Romero T; Lamolda M; Cobo M; Martin F; Menendez P; Real PJ Mol Ther; 2015 Jan; 23(1):158-70. PubMed ID: 25292191 [TBL] [Abstract][Full Text] [Related]
7. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. Zhai PF; Wang F; Su R; Lin HS; Jiang CL; Yang GH; Yu J; Zhang JW J Biol Chem; 2014 Aug; 289(33):22600-22613. PubMed ID: 24982425 [TBL] [Abstract][Full Text] [Related]
8. Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage. Randrianarison-Huetz V; Laurent B; Bardet V; Blobe GC; Huetz F; Duménil D Blood; 2010 Apr; 115(14):2784-95. PubMed ID: 20124515 [TBL] [Abstract][Full Text] [Related]
9. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Tallack MR; Magor GW; Dartigues B; Sun L; Huang S; Fittock JM; Fry SV; Glazov EA; Bailey TL; Perkins AC Genome Res; 2012 Dec; 22(12):2385-98. PubMed ID: 22835905 [TBL] [Abstract][Full Text] [Related]
10. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Schuh AH; Tipping AJ; Clark AJ; Hamlett I; Guyot B; Iborra FJ; Rodriguez P; Strouboulis J; Enver T; Vyas P; Porcher C Mol Cell Biol; 2005 Dec; 25(23):10235-50. PubMed ID: 16287841 [TBL] [Abstract][Full Text] [Related]
11. Ldb1 complexes: the new master regulators of erythroid gene transcription. Love PE; Warzecha C; Li L Trends Genet; 2014 Jan; 30(1):1-9. PubMed ID: 24290192 [TBL] [Abstract][Full Text] [Related]
12. An intricate regulatory circuit between FLI1 and GATA1/GATA2/LDB1/ERG dictates erythroid vs. megakaryocytic differentiation. Wang C; Hu M; Yu K; Liu W; Hu A; Kuang Y; Huang L; Gajendran B; Zacksenhaus E; Xiao X; Ben-David Y Mol Med Rep; 2024 Jun; 29(6):. PubMed ID: 38695236 [TBL] [Abstract][Full Text] [Related]
13. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation. Wontakal SN; Guo X; Smith C; MacCarthy T; Bresnick EH; Bergman A; Snyder MP; Weissman SM; Zheng D; Skoultchi AI Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3832-7. PubMed ID: 22357756 [TBL] [Abstract][Full Text] [Related]
14. Effect of endoglin overexpression during embryoid body development. Baik J; Borges L; Magli A; Thatava T; Perlingeiro RC Exp Hematol; 2012 Oct; 40(10):837-46. PubMed ID: 22728030 [TBL] [Abstract][Full Text] [Related]
15. c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Guo Y; Niu C; Breslin P; Tang M; Zhang S; Wei W; Kini AR; Paner GP; Alkan S; Morris SW; Diaz M; Stiff PJ; Zhang J Blood; 2009 Sep; 114(10):2097-106. PubMed ID: 19372257 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Tijssen MR; Cvejic A; Joshi A; Hannah RL; Ferreira R; Forrai A; Bellissimo DC; Oram SH; Smethurst PA; Wilson NK; Wang X; Ottersbach K; Stemple DL; Green AR; Ouwehand WH; Göttgens B Dev Cell; 2011 May; 20(5):597-609. PubMed ID: 21571218 [TBL] [Abstract][Full Text] [Related]
17. SON inhibits megakaryocytic differentiation via repressing RUNX1 and the megakaryocytic gene expression program in acute megakaryoblastic leukemia. Vukadin L; Kim JH; Park EY; Stone JK; Ungerleider N; Baddoo MC; Kong HK; Richard A; Tran J; Giannini H; Flemington EK; Lim SS; Ahn EE Cancer Gene Ther; 2021 Sep; 28(9):1000-1015. PubMed ID: 33247227 [TBL] [Abstract][Full Text] [Related]
18. Notch Stimulates Both Self-Renewal and Lineage Plasticity in a Subset of Murine CD9High Committed Megakaryocytic Progenitors. Weiss-Gayet M; Starck J; Chaabouni A; Chazaud B; Morlé F PLoS One; 2016; 11(4):e0153860. PubMed ID: 27089435 [TBL] [Abstract][Full Text] [Related]
19. CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1. Yi G; Mandoli A; Jussen L; Tijchon E; van Bergen MGJM; Cordonnier G; Hansen M; Kim B; Nguyen LN; Jansen PWTC; Vermeulen M; van der Reijden B; van den Akker E; Bond J; Martens JHA Blood Cancer J; 2019 Mar; 9(3):33. PubMed ID: 30850577 [TBL] [Abstract][Full Text] [Related]
20. Expression of transcription factors during megakaryocytic differentiation of CD34+ cells from human cord blood induced by thrombopoietin. Terui K; Takahashi Y; Kitazawa J; Toki T; Yokoyama M; Ito E Tohoku J Exp Med; 2000 Dec; 192(4):259-73. PubMed ID: 11286316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]