BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25912014)

  • 1. Organ-Specific Cancer Metabolism and Its Potential for Therapy.
    Elia I; Schmieder R; Christen S; Fendt SM
    Handb Exp Pharmacol; 2016; 233():321-53. PubMed ID: 25912014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Warburg and Krebs and related effects in cancer.
    Unterlass JE; Curtin NJ
    Expert Rev Mol Med; 2019 Sep; 21():e4. PubMed ID: 31558177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival.
    Baenke F; Dubuis S; Brault C; Weigelt B; Dankworth B; Griffiths B; Jiang M; Mackay A; Saunders B; Spencer-Dene B; Ros S; Stamp G; Reis-Filho JS; Howell M; Zamboni N; Schulze A
    J Pathol; 2015 Oct; 237(2):152-65. PubMed ID: 25965974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steroid hormone receptors as targets for the therapy of breast and prostate cancer--recent advances, mechanisms of resistance, and new approaches.
    Hoffmann J; Sommer A
    J Steroid Biochem Mol Biol; 2005 Feb; 93(2-5):191-200. PubMed ID: 15860262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect.
    Sun L; Suo C; Li ST; Zhang H; Gao P
    Biochim Biophys Acta Rev Cancer; 2018 Aug; 1870(1):51-66. PubMed ID: 29959989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy.
    Obre E; Rossignol R
    Int J Biochem Cell Biol; 2015 Feb; 59():167-81. PubMed ID: 25542180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Deoxyglucose induces the expression of thioredoxin interacting protein (TXNIP) by increasing O-GlcNAcylation - Implications for targeting the Warburg effect in cancer cells.
    Hong SY; Hagen T
    Biochem Biophys Res Commun; 2015 Oct; 465(4):838-44. PubMed ID: 26315267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and Amino Acid Alterations of the Tumor Microenvironment.
    Stepka P; Vsiansky V; Raudenska M; Gumulec J; Adam V; Masarik M
    Curr Med Chem; 2021; 28(7):1270-1289. PubMed ID: 32031065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting cancer metabolism--aiming at a tumour's sweet-spot.
    Jones NP; Schulze A
    Drug Discov Today; 2012 Mar; 17(5-6):232-41. PubMed ID: 22207221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drivers of the Warburg phenotype.
    Cairns RA
    Cancer J; 2015; 21(2):56-61. PubMed ID: 25815844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic reprogramming of the tumor.
    Ferreira LM; Hebrant A; Dumont JE
    Oncogene; 2012 Sep; 31(36):3999-4011. PubMed ID: 22231450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial substrates in cancer: drivers or passengers?
    Kruspig B; Zhivotovsky B; Gogvadze V
    Mitochondrion; 2014 Nov; 19 Pt A():8-19. PubMed ID: 25179741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy.
    Zhang D; Li J; Wang F; Hu J; Wang S; Sun Y
    Cancer Lett; 2014 Dec; 355(2):176-83. PubMed ID: 25218591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function.
    Mouradian M; Kikawa KD; Dranka BP; Komas SM; Kalyanaraman B; Pardini RS
    Mol Carcinog; 2015 Sep; 54(9):810-20. PubMed ID: 24729481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment.
    Nwabo Kamdje AH; Seke Etet PF; Vecchio L; Muller JM; Krampera M; Lukong KE
    Cell Signal; 2014 Dec; 26(12):2843-56. PubMed ID: 25093804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a metabolic therapy of cancer?
    Chiu M; Ottaviani L; Bianchi MG; Franchi-Gazzola R; Bussolati O
    Acta Biomed; 2012 Dec; 83(3):168-76. PubMed ID: 23762991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect.
    Weljie AM; Jirik FR
    Int J Biochem Cell Biol; 2011 Jul; 43(7):981-9. PubMed ID: 20797448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells.
    Vaughan RA; Garcia-Smith R; Trujillo KA; Bisoffi M
    Prostate; 2013 Oct; 73(14):1538-46. PubMed ID: 23818177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.