These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 25912028)
1. Athrombogenic hydrogel coatings for medical devices--Examination of biological properties. Butruk-Raszeja BA; Łojszczyk I; Ciach T; Kościelniak-Ziemniak M; Janiczak K; Kustosz R; Gonsior M Colloids Surf B Biointerfaces; 2015 Jun; 130():192-8. PubMed ID: 25912028 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction. Butruk B; Trzaskowski M; Ciach T Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1601-9. PubMed ID: 24364966 [TBL] [Abstract][Full Text] [Related]
3. Cell membrane-mimicking coating for blood-contacting polyurethanes. Butruk-Raszeja B; Trzaskowski M; Ciach T J Biomater Appl; 2015 Jan; 29(6):801-12. PubMed ID: 25234122 [TBL] [Abstract][Full Text] [Related]
4. Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane. Massa TM; Yang ML; Ho JY; Brash JL; Santerre JP Biomaterials; 2005 Dec; 26(35):7367-76. PubMed ID: 16026826 [TBL] [Abstract][Full Text] [Related]
5. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. Ma L; Cheng C; He C; Nie C; Deng J; Sun S; Zhao C ACS Appl Mater Interfaces; 2015 Dec; 7(47):26050-62. PubMed ID: 26553500 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional Coating Based on Hyaluronic Acid and Dopamine Conjugate for Potential Application on Surface Modification of Cardiovascular Implanted Devices. Wu F; Li J; Zhang K; He Z; Yang P; Zou D; Huang N ACS Appl Mater Interfaces; 2016 Jan; 8(1):109-21. PubMed ID: 26654689 [TBL] [Abstract][Full Text] [Related]
7. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Zhang L; Casey B; Galanakis DK; Marmorat C; Skoog S; Vorvolakos K; Simon M; Rafailovich MH Acta Biomater; 2017 May; 54():164-174. PubMed ID: 28263863 [TBL] [Abstract][Full Text] [Related]
8. Blood compatibility of polyurethane surface grafted copolymerization with sulfobetaine monomer. Jiang Y; Rongbing B; Ling T; Jian S; Sicong L Colloids Surf B Biointerfaces; 2004 Jul; 36(1):27-33. PubMed ID: 15261020 [TBL] [Abstract][Full Text] [Related]
9. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating. Joung YK; You SS; Park KM; Go DH; Park KD Colloids Surf B Biointerfaces; 2012 Nov; 99():102-7. PubMed ID: 22100384 [TBL] [Abstract][Full Text] [Related]
10. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Wang Y; Hong Q; Chen Y; Lian X; Xiong Y Colloids Surf B Biointerfaces; 2012 Dec; 100():77-83. PubMed ID: 22771524 [TBL] [Abstract][Full Text] [Related]
11. Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film. Hayama M; Yamamoto K; Kohori F; Uesaka T; Ueno Y; Sugaya H; Itagaki I; Sakai K Biomaterials; 2004 Mar; 25(6):1019-28. PubMed ID: 14615167 [TBL] [Abstract][Full Text] [Related]
12. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Li D; Chen H; Glenn McClung W; Brash JL Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321 [TBL] [Abstract][Full Text] [Related]
13. Influence of the molecular structure of surface-attached poly(N-alkyl acrylamide) coatings on the interaction of surfaces with proteins, cells and blood platelets. Pandiyarajan CK; Prucker O; Zieger B; Rühe J Macromol Biosci; 2013 Jul; 13(7):873-84. PubMed ID: 23596084 [TBL] [Abstract][Full Text] [Related]
14. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121 [TBL] [Abstract][Full Text] [Related]
15. Hemocompatibility of titanium oxide films. Huang N; Yang P; Leng YX; Chen JY; Sun H; Wang J; Wang GJ; Ding PD; Xi TF; Leng Y Biomaterials; 2003 Jun; 24(13):2177-87. PubMed ID: 12699653 [TBL] [Abstract][Full Text] [Related]
16. The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. Kovach KM; Capadona JR; Gupta AS; Potkay JA J Biomed Mater Res A; 2014 Dec; 102(12):4195-205. PubMed ID: 24443272 [TBL] [Abstract][Full Text] [Related]
17. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane. Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141 [TBL] [Abstract][Full Text] [Related]
18. In vitro hemocompatibility on thin ceramic and hydrogel films deposited on polymer substrate performed in arterial flow conditions. Major R; Trembecka-Wójciga K; Kot M; Lackner JM; Wilczek P; Major B Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():15-22. PubMed ID: 26838818 [TBL] [Abstract][Full Text] [Related]
19. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies. Thiruppathi E; Larson MK; Mani G Langmuir; 2015; 31(1):358-70. PubMed ID: 25495665 [TBL] [Abstract][Full Text] [Related]