BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25912028)

  • 1. Athrombogenic hydrogel coatings for medical devices--Examination of biological properties.
    Butruk-Raszeja BA; Łojszczyk I; Ciach T; Kościelniak-Ziemniak M; Janiczak K; Kustosz R; Gonsior M
    Colloids Surf B Biointerfaces; 2015 Jun; 130():192-8. PubMed ID: 25912028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction.
    Butruk B; Trzaskowski M; Ciach T
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1601-9. PubMed ID: 24364966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell membrane-mimicking coating for blood-contacting polyurethanes.
    Butruk-Raszeja B; Trzaskowski M; Ciach T
    J Biomater Appl; 2015 Jan; 29(6):801-12. PubMed ID: 25234122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane.
    Massa TM; Yang ML; Ho JY; Brash JL; Santerre JP
    Biomaterials; 2005 Dec; 26(35):7367-76. PubMed ID: 16026826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.
    Ma L; Cheng C; He C; Nie C; Deng J; Sun S; Zhao C
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26050-62. PubMed ID: 26553500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Coating Based on Hyaluronic Acid and Dopamine Conjugate for Potential Application on Surface Modification of Cardiovascular Implanted Devices.
    Wu F; Li J; Zhang K; He Z; Yang P; Zou D; Huang N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):109-21. PubMed ID: 26654689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion.
    Zhang L; Casey B; Galanakis DK; Marmorat C; Skoog S; Vorvolakos K; Simon M; Rafailovich MH
    Acta Biomater; 2017 May; 54():164-174. PubMed ID: 28263863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood compatibility of polyurethane surface grafted copolymerization with sulfobetaine monomer.
    Jiang Y; Rongbing B; Ling T; Jian S; Sicong L
    Colloids Surf B Biointerfaces; 2004 Jul; 36(1):27-33. PubMed ID: 15261020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating.
    Joung YK; You SS; Park KM; Go DH; Park KD
    Colloids Surf B Biointerfaces; 2012 Nov; 99():102-7. PubMed ID: 22100384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers.
    Wang Y; Hong Q; Chen Y; Lian X; Xiong Y
    Colloids Surf B Biointerfaces; 2012 Dec; 100():77-83. PubMed ID: 22771524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film.
    Hayama M; Yamamoto K; Kohori F; Uesaka T; Ueno Y; Sugaya H; Itagaki I; Sakai K
    Biomaterials; 2004 Mar; 25(6):1019-28. PubMed ID: 14615167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D; Chen H; Glenn McClung W; Brash JL
    Acta Biomater; 2009 Jul; 5(6):1864-71. PubMed ID: 19342321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the molecular structure of surface-attached poly(N-alkyl acrylamide) coatings on the interaction of surfaces with proteins, cells and blood platelets.
    Pandiyarajan CK; Prucker O; Zieger B; Rühe J
    Macromol Biosci; 2013 Jul; 13(7):873-84. PubMed ID: 23596084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes.
    Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C
    Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemocompatibility of titanium oxide films.
    Huang N; Yang P; Leng YX; Chen JY; Sun H; Wang J; Wang GJ; Ding PD; Xi TF; Leng Y
    Biomaterials; 2003 Jun; 24(13):2177-87. PubMed ID: 12699653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility.
    Kovach KM; Capadona JR; Gupta AS; Potkay JA
    J Biomed Mater Res A; 2014 Dec; 102(12):4195-205. PubMed ID: 24443272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro hemocompatibility on thin ceramic and hydrogel films deposited on polymer substrate performed in arterial flow conditions.
    Major R; Trembecka-Wójciga K; Kot M; Lackner JM; Wilczek P; Major B
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():15-22. PubMed ID: 26838818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.
    Thiruppathi E; Larson MK; Mani G
    Langmuir; 2015; 31(1):358-70. PubMed ID: 25495665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.