BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25912046)

  • 21. Insights from the Shell Proteome: Biomineralization to Adaptation.
    Arivalagan J; Yarra T; Marie B; Sleight VA; Duvernois-Berthet E; Clark MS; Marie A; Berland S
    Mol Biol Evol; 2017 Jan; 34(1):66-77. PubMed ID: 27744410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes.
    Shi M; Lin Y; Xu G; Xie L; Hu X; Bao Z; Zhang R
    Mar Biotechnol (NY); 2013 Dec; 15(6):706-15. PubMed ID: 23860577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical properties of modern calcite- (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation.
    Merkel C; Deuschle J; Griesshaber E; Enders S; Steinhauser E; Hochleitner R; Brand U; Schmahl WW
    J Struct Biol; 2009 Dec; 168(3):396-408. PubMed ID: 19729068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties.
    Marie B; Jackson DJ; Ramos-Silva P; Zanella-Cléon I; Guichard N; Marin F
    FEBS J; 2013 Jan; 280(1):214-32. PubMed ID: 23145877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brachiopod punctae: a complexity in shell biomineralisation.
    Pérez-Huerta A; Cusack M; McDonald S; Marone F; Stampanoni M; MacKay S
    J Struct Biol; 2009 Jul; 167(1):62-7. PubMed ID: 19341799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping of recent brachiopod microstructure: A tool for environmental studies.
    Ye F; Crippa G; Angiolini L; Brand U; Capitani G; Cusack M; Garbelli C; Griesshaber E; Harper E; Schmahl W
    J Struct Biol; 2018 Mar; 201(3):221-236. PubMed ID: 29175289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa.
    Marie B; Arivalagan J; Mathéron L; Bolbach G; Berland S; Marie A; Marin F
    J R Soc Interface; 2017 Jan; 14(126):. PubMed ID: 28123096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Material properties of brachiopod shell ultrastructure by nanoindentation.
    Pérez-Huerta A; Cusack M; Zhu W; England J; Hughes J
    J R Soc Interface; 2007 Feb; 4(12):33-9. PubMed ID: 17015292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An intracrystalline chromoprotein from red brachiopod shells: implications for the process of biomineralization.
    Cusack M; Curry G; Clegg H; Abbott G
    Comp Biochem Physiol B; 1992 May; 102(1):93-5. PubMed ID: 1526140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic analysis of shell matrix proteins from the chiton Acanthopleura loochooana.
    Liu C; Yuan Y; Zhang W; Huang J
    Comp Biochem Physiol Part D Genomics Proteomics; 2024 Mar; 49():101176. PubMed ID: 38128379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study.
    Arivalagan J; Marie B; Sleight VA; Clark MS; Berland S; Marie A
    Mar Genomics; 2016 Jun; 27():69-74. PubMed ID: 27068305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale structure of calcite fibres of the shell of the brachiopod Terebratulina retusa.
    Cusack M; Dauphin Y; Chung P; Pérez-Huerta A; Cuif JP
    J Struct Biol; 2008 Oct; 164(1):96-100. PubMed ID: 18634885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology.
    Ishikawa A; Shimizu K; Isowa Y; Takeuchi T; Zhao R; Kito K; Fujie M; Satoh N; Endo K
    Sci Rep; 2020 Jun; 10(1):9768. PubMed ID: 32555253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A modern scleractinian coral with a two-component calcite-aragonite skeleton.
    Stolarski J; Coronado I; Murphy JG; Kitahara MV; Janiszewska K; Mazur M; Gothmann AM; Bouvier AS; Marin-Carbonne J; Taylor ML; Quattrini AM; McFadden CS; Higgins JA; Robinson LF; Meibom A
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33323482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure and in-depth proteomic analysis of Perna viridis shell.
    Liao Z; Jiang YT; Sun Q; Fan MH; Wang JX; Liang HY
    PLoS One; 2019; 14(7):e0219699. PubMed ID: 31323046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution and biomineralization of pteropod shells.
    Ramos-Silva P; Wall-Palmer D; Marlétaz F; Marin F; Peijnenburg KTCA
    J Struct Biol; 2021 Dec; 213(4):107779. PubMed ID: 34474158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic investigation of the blue mussel larval shell organic matrix.
    Carini A; Koudelka T; Tholey A; Appel E; Gorb SN; Melzner F; Ramesh K
    J Struct Biol; 2019 Dec; 208(3):107385. PubMed ID: 31505249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular paleobiological insights into the origin of the Brachiopoda.
    Sperling EA; Pisani D; Peterson KJ
    Evol Dev; 2011; 13(3):290-303. PubMed ID: 21535467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deciphering the distribution of organic components in brachiopod shells by confocal laser scanning microscopy.
    Pérez-Huerta A; Cusack M; Ball A; Williams CT; Mackay S
    J Microsc; 2008 Apr; 230(Pt 1):94-9. PubMed ID: 18387044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial gene order variation in the brachiopod Lingula anatina and its implications for mitochondrial evolution in lophotrochozoans.
    Luo YJ; Satoh N; Endo K
    Mar Genomics; 2015 Dec; 24 Pt 1():31-40. PubMed ID: 26342990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.